Analysis of Li-Ion Battery Joining Technologies*

Wayne Cai, Ph.D.

Manufacturing Systems Research Laboratory General Motors Global R&D Center Warren, MI, USA <u>wayne.cai@gm.com</u>

International Battery Seminar and Exhibit March 21, 2017

* W. Cai, B. Kang, and S.J. Hu, (2017), Ultrasonic Welding of Lithium-Ion Batteries, ASME Press * W. Cai, (2016), Lithium-ion Battery Manufacturing for Electric Vehicles: A Contemporary Overview, in Advances in Battery Manufacturing, Service, and Management Systems (eds J. Li, S. Zhou and Y. Han), John Wiley & Sons, Inc., Hoboken, NJ, USA.

Outline

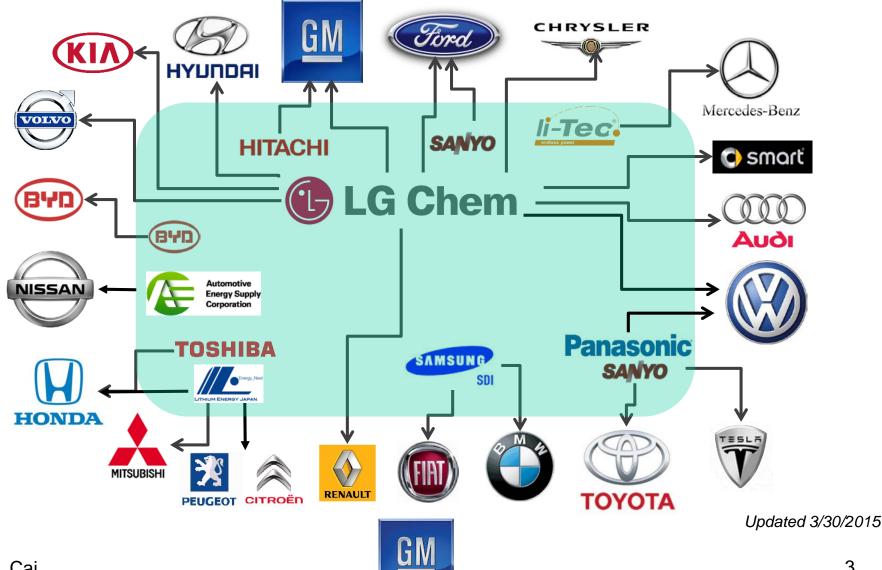
1. BATTERY ELECTRIC VEHICLES

2. LI-ION BATTERY CELLS, MODULES AND PACKS

- 1) Formats of Li-ion Battery Cells
- 2) Battery Modules and Pack

3. JOINING TECHNOLOGIES FOR BATTERIES

- 1) Ultrasonic Metal Welding
- 2) Resistance Welding
- 3) Laser Beam Welding
- 4) Wire-bonding
- 5) Mechanical Joining

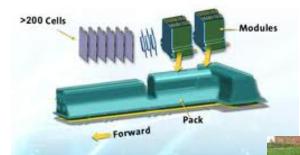

4. BATTERY MANUFACTURING: THE INDUSTRIAL LANDSCAPE

- 1) Cell Manufacturing
- 2) Module Assembly (Cell-to-Cell)
- 3) Pack Assembly (Module-to-Module)

5. CONCLUSIONS

1. Battery Electrical Vehicle Landscape

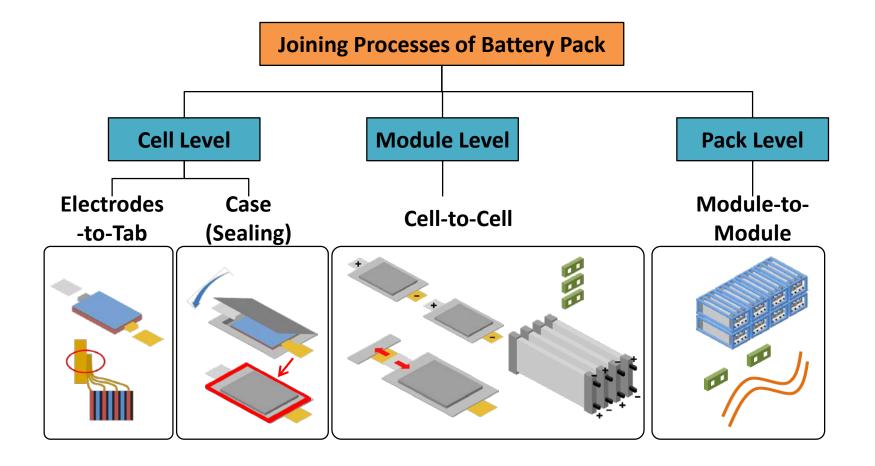
1. Battery Electrical Vehicles


TABLE 1.1	SELECTED TECHNICAL DATA FOR MAJOR BEVS
-----------	--

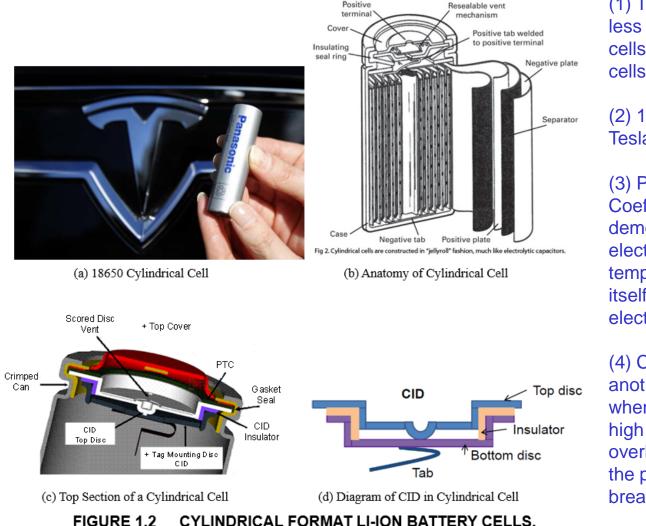
	Toyota Prius	GM	Tesla	Nissan	BMW
	Plug-in [2]	Chevy Volt	Model S	LEAF [5]	i3 [7][8]
		[3]	[4]		
Model Year	2012-2014	2015	2012-2015	2013/2014	2014
Energy Storage (kWh)	4.4	16	85	24	18.8
Fuel Economy (MPGe)	58	62	89	115	124
Pure Electric Driving	11	39	265	75	81
Range (miles)					
Cell Manufacturer	Panasonic	LG Chem	Panasonic	AESC	Samsung
					SDI
# of Cells	288	288	7104	192	96
Cell Format	Prismatic	Pouch	Cylindrical	Pouch	Prismatic
Cell-to-Cell Joining	Bolting	Ultrasonic	Wire	Ultrasonic	Laser
		welding	bonding	welding	welding
# of Modules	3	9	16	48	8
Module-to-Module Joining	Bolting				

Chevy Volt

Battery Pack – Basic Construction



Source: Google images


Hierarchy of Battery Pack Manufacturing

2. LI-ION BATTERY CELLS, MODULES & PACKS

Cylindrical Cells

(1) The cylindrical cells are known to be less volumetric efficient than prismatic cells, but were the first format of li-ion cells

(2) 18650 cylindrical cells are used in Tesla's electric vehicles

(3) PTC, or Positive Temperature Coefficient, is a type of material that demonstrates significantly high electrical resistivity at high temperatures so as to melt the PTC itself to break the circuit at higher electrical current.

(4) CID, or Current Interrupt Device, is another passive device that breaks when the pressure inside a cell reaches high levels. Normally, when the cell is overheated, such as in a thermal-away, the pressure increases to a level to break the CID and thereof the circuit.

2. LI-ION BATTERY CELLS, MODULES & PACKS

Prismatic Cells

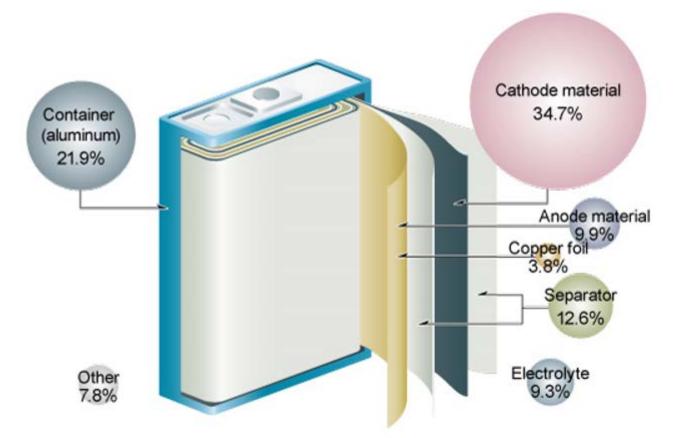


FIGURE 1.3 AN ANATOMY OF A PRISMATIC LI-ION BATTERY CELL, WHERE THE % INDICATING THE ESTIMATE COST

2. LI-ION BATTERY CELLS, MODULES & PACKS

Pouch Cells

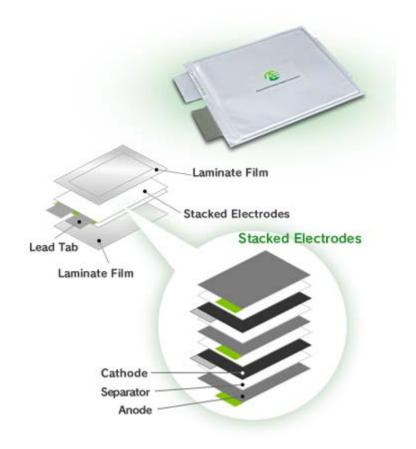
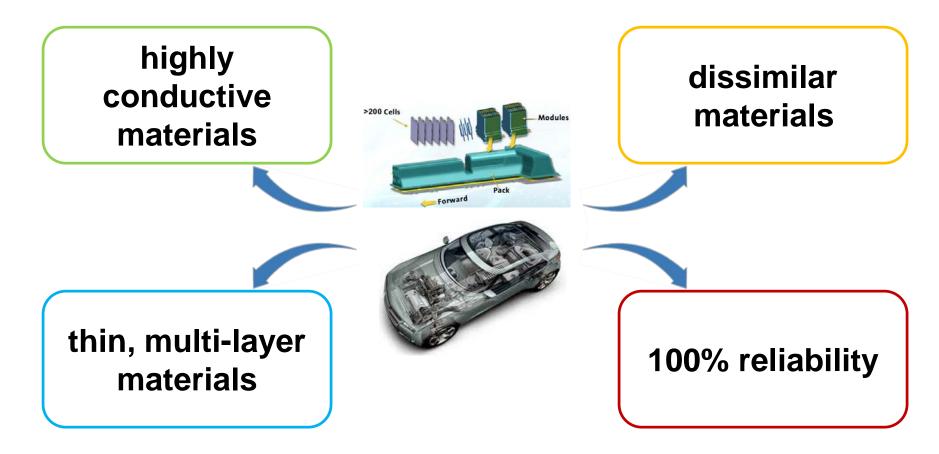



FIGURE 1.4 SCHEMATICS OF POUCH TYPE CELLS

Ultrasonic Welding

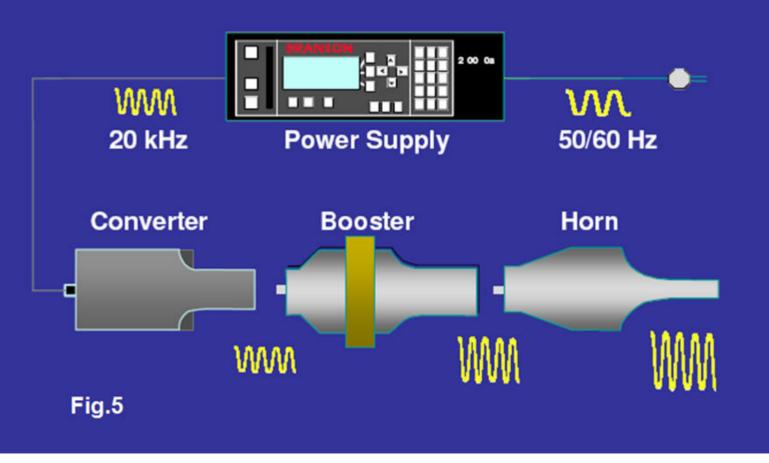
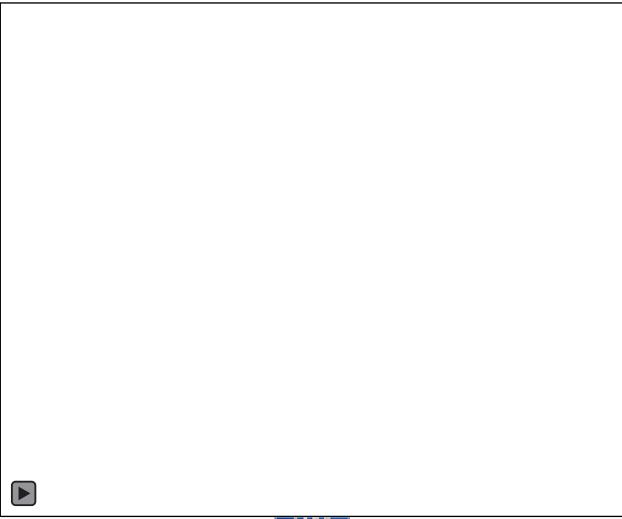



FIGURE 1.6 A SCHEMETIC OF ULTRASONIC METAL WELDING SYSTEM

Ultrasonic Welding

Ultrasonic Welding

(a)

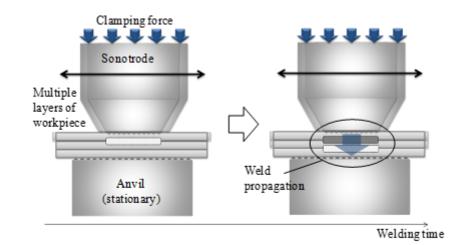
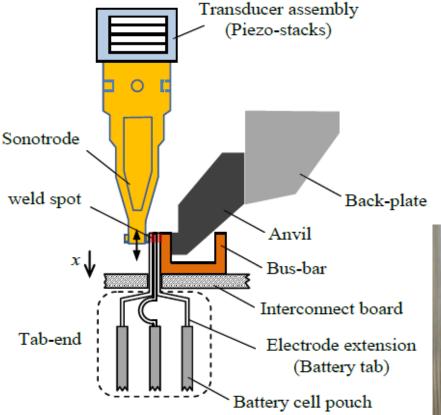

(c)

FIGURE 1.7 (A) AL WIRE WELDING ONTO CU; (B) CU AND AL WELDING; (C) MULTI-LAYERED CU FOIL WELDING; (D) ULTRASONIC SEAM WELDING

The Ultrasonic Bonding Mechanisms

FIGURE 1.8 WELD PROPAGATION IN ULTRASONIC METAL WELDING OF MULTIPLE SHEETS


A combination of the following four mechanisms may attribute to the bonding:

- (a) micro-melting (e.g., a few microns of thin interface layer melting),
- (b) metal interlocking (due to plastic deformation, particularly the severe deformation caused by sonotrode knurls),
- (c) atomic diffusion, and
- (d) metallic bonding

Chevy Volt Ultrasonic Welding:

between battery tabs and the interconnect bus bar

B.S. Kang, W. Cai, and C.A. Tan, "Dynamic Stress Analysis of Battery Tabs under Ultrasonic Welding," ASME Journal of Manufacturing Science & Engineering, 136(4), 041011 (May 21, 2014).

Ultrasonic Welding Quality Prediction #1: Temperatures and Bonding Quality

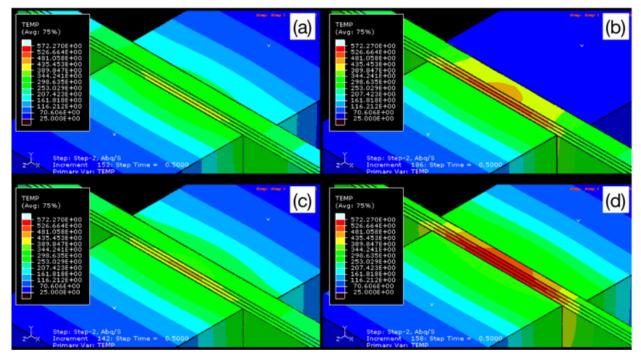
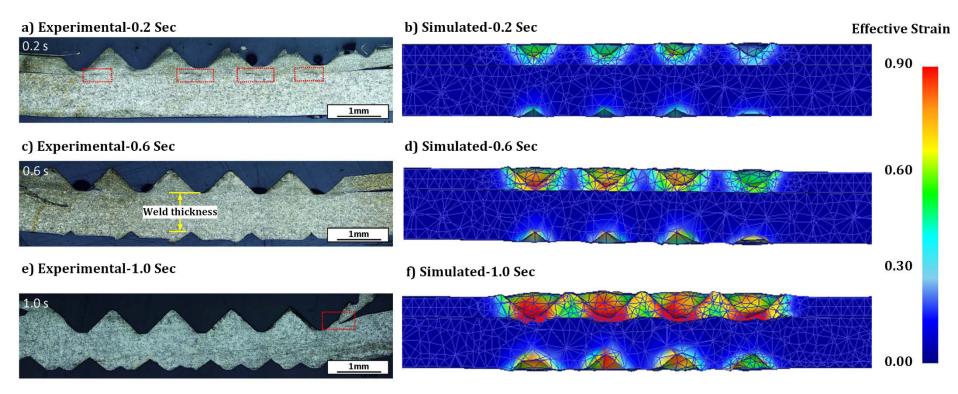
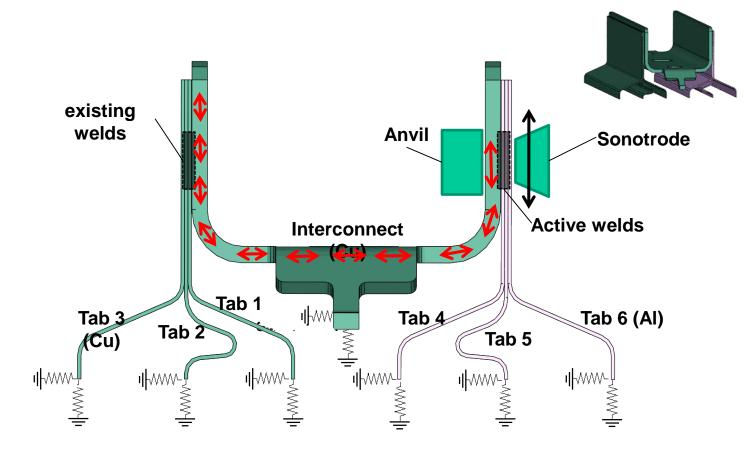



FIGURE 1.9 TEMPERATURE CONTOURS AT THE END OF A 500 MS ULTRASONIC WELDING FOR (A) BASELINE MODEL, (B) INSULATED ANVIL, (C) 100°C PREHEATING (D) 0.6 MM THICK BUSBAR INSTEAD OF 0.9 MM

The finding: preheating enhances the bonding quality

Ultrasonic Welding Quality Prediction #2: Fracture



Simulated deformation as compared with the experimental results

Fractures of the top layers should be avoided

Ultrasonic Welding Quality Prediction #3: Vibration

Cautions should be exercised to void damage from vibrations

Resistance Spot Welding

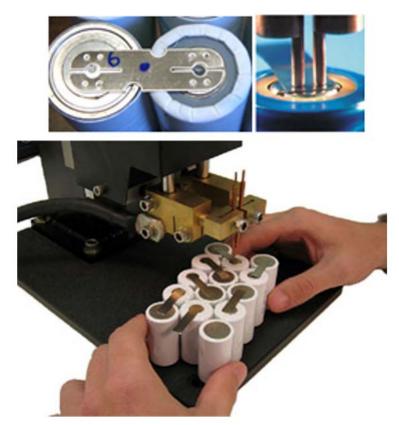


FIGURE 1.15 BATTERY CELL RESISTANCE SPOT WELDING BY AMADA MIYACHI, AND (BOTTOM) SUNSTONE ENGINEERING

Laser Beam Welding

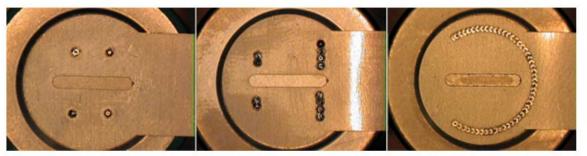
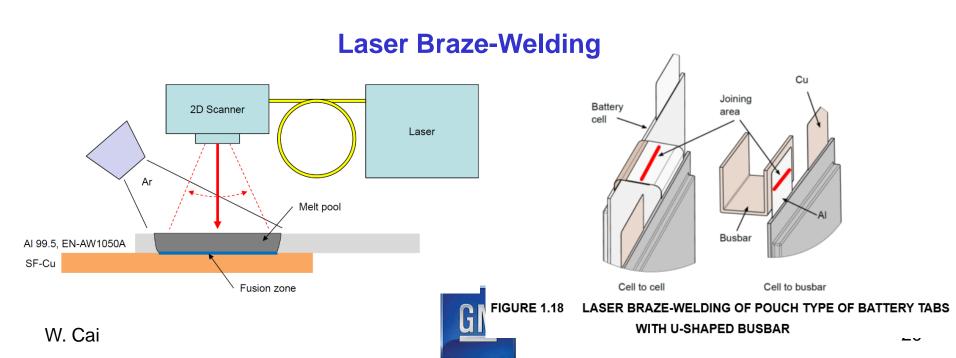



FIGURE 1.16 LASER WELDING OF BUSBARS TO CYLINDRICAL BATTERY

CANS

BMW i3: Laser Welding

Wire-bonding

Heavy Copper (Cu) Wire Bonding ©Hesse Mechatronics, Inc.

TABLE 3.2 SUMMARY OF BATTERY JOINING TECHNOLOGIES

Joining methods	Advantages	Disadvantages
Ultrasonic welding	 Excellent for dissimilar materials due to minimal intermetallics Excellent for thin sheets or wires Excellent for multiple wires or multilayered sheets Low heat-affected zone: low thermal distortion and low residual stresses Excellent for highly conductive materials 	 Double-sided May have severe knurl perforation at the top and/or bottom weld surface May cause structural vibration Has an upper limit in total joint thickness Most suitable for soft materials
Resistance	 Can be single-sided welding Relatively mature technology with established weld quality monitoring 	 Large heat-affected zone: large thermal distortion and residual stresses Large amount of intermetallics for dissimilar materials

- Difficult for highly conductive materials
- Difficult for multiple layers
- Difficult to produce large welds
- Electrode sticking/wear

and/or control methods

Low cost

•

TABLE 3.2 SUMMARY OF BATTERY JOINING TECHNOLOGIES				
Joining methods	Advantages	Disadvantages		
Laser welding	 Relatively small heat-affected zone: small thermal distortion and residual stresses Single-sided and non-contact High throughput 	 Large amount of intermetallics for dissimilar materials Porosity and hot-cracking Requiring very tight sheets fit-up High initial cost 		
Wire bonding	 Low heat-affected zone: low thermal distortion and low residual stresses No or very little intermetallics for dissimilar materials Excellent for highly conductive materials Single-sided Built-in bond strength evaluation 	 Only light gauges of wires can be bonded onto the substrates (such as the bus bars or bus plates) and thus the electrical current carrying capability is limited Most suitable for soft materials Substrate needs to have rigidity to sustain the bonding force 		
Mechanical joining	Joint strengths can be very highEasy disassembly	Added parts and massLabor-intensiveCorrosion		
vv. Vai		۲-		

Cell Manufacturing

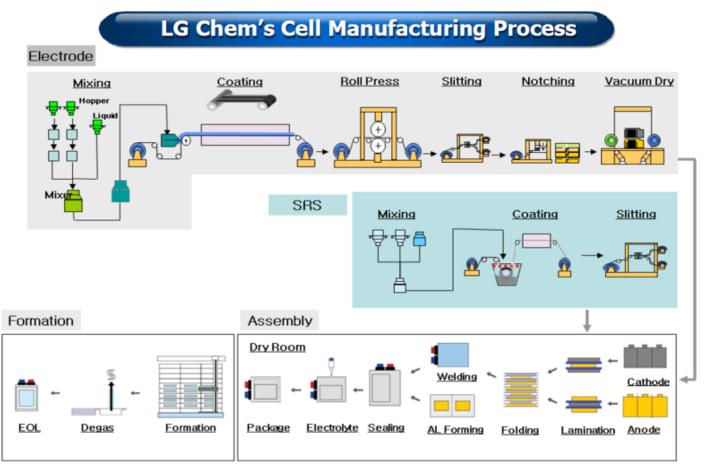


FIGURE 1.22 LG CHEM'S LI-ION BATTERY CELL (POUCH TYPE)

MANUFACTURING PROCESS

2 1 1 4

List of battery cell components requiring joining

The following is a list of battery cell components requiring joining:

For all cell formats

Cathode current collector (i.e., foil):

Anode current collector (i.e., foil):

Positive electrode lead (i.e., tab):

Negative electrode lead (i.e., tab):

For cylindrical and prismatic cells only

Enclosure case (i.e., container): Enclosure cover (i.e., top plate): commercial grade pure Al (e.g., 1100) commercial grade pure Cu (e.g., CDA 110) commercial grade pure Al (e.g., 1100) commercial grade pure Cu (e.g., CDA 110), or Ni

steels, stainless steels, aluminum alloys steels, stainless steels, aluminum alloys

Welding occurs for the following four scenarios in a battery cell

Welding occurs for the following four scenarios in a battery cell:

- (For all cell formats): between an electrode lead/tab and multiple (such as 10 100) layers of current collectors. Thickness of each layer ranges from 10 - 30 microns depending on the design and materials used, and the cathode foils are thicker than the anode foils when Al and Cu are used. The thickness of the lead/tab is 0.1 - 0.2 mm. Ultrasonic welding is commonly used.
- (For all cell formats): for multiple layers of foils themselves. This welding operation is optional. Ultrasonic welding is commonly used.
- (For cylindrical cells only): between a positive tab and a positive terminal, or a negative tab and the bottom of the enclosure case. Laser welding or resistance spot welding is commonly used.
- (For prismatic cells only): between the enclosure case and the cover. Laser welding is commonly used.

Module Assembly (Cell-to-Cell)

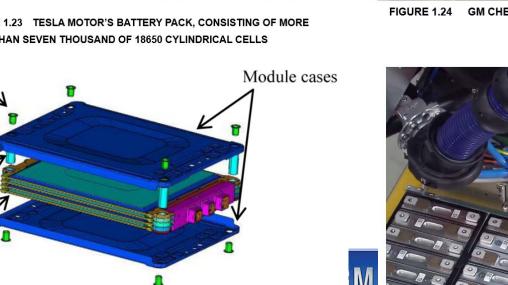

FIGURE 1.23 TESLA MOTOR'S BATTERY PACK, CONSISTING OF MORE THAN SEVEN THOUSAND OF 18650 CYLINDRICAL CELLS

FIGURE 1.25 NISSAN LEAF'S BATTERY MODULE

Press-fit

Sleeve

Battery cell

GM CHEVY VOLT: BATTERY MODULES WITH ULTRASONIC WELDS

FIGURE 1.26 **BMW I3 BATTERY MODULE**

Conclusions

- Li-ion battery and battery electric vehicle marketplace are growing and evolving rapidly. As
 of 2014, Panasonic, AESC, LG Chem and BYD are the four largest traction battery cell
 manufacturers in the world, supplying batteries to Tesla Model S (pure BEV), Nissan LEAF
 (pure BEV), GM Chevrolet (EREV), and BYD (pure EV and PHEV), respectively.
- 2) There are three major cell formats for Li-ion traction batteries, i.e., cylindrical, prismatic, and pouch. The manufacturing processes for cylindrical and prismatic cells are substantially similar, but deviate meaningfully from that for the pouch-type cells. The exact manufacturing process for any format is determined by the designs, materials, and cell and BEV manufacturers' preferences.
- The traction Li-ion battery joining is an important manufacturing process at three different levels, i.e., cell level (inside cell joining), module level (cell-to-cell joining) and pack level (module-to-module).
- Ultrasonic welding, laser beam welding, resistance welding, wire bonding and mechanical joining are the commonly used joining techniques for Li-ion battery cells, modules and packs.

Thank You!

