Nanocomposites as next-generation anode materials for lithium ion batteries

Lorenzo Mangolini
Mechanical Engineering Department
Materials Science and Engineering Program

UC Riverside

International Battery Research Seminar
March 21st, 2017
The need for storage

Sparks fly
Battery electric vehicles, worldwide

Battery cost, €/kWh

Penetration, %

FORECAST

New forecast

Old forecast

Source: Exane BNP Paribas; UBS

Who gets the bill?
California, net electricity-load requirement*
Typical spring day, gigawatts

An increase of 10.9GW over three hours (February 1st 2016)

Source: California ISO

*Demand minus renewable generation

First Solar among investors in Younicos’ US$50 million energy storage ‘land grab’
Our focus: silicon-based anodes

Inexpensive, sustainable, abundant, non-toxic

<table>
<thead>
<tr>
<th>Materials</th>
<th>Li</th>
<th>C</th>
<th>Li₄Ti₃O₁₂</th>
<th>Si</th>
<th>Sn</th>
<th>Sb</th>
<th>Al</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g cm⁻³)</td>
<td>0.53</td>
<td>2.25</td>
<td>3.5</td>
<td>2.33</td>
<td>7.29</td>
<td>6.7</td>
<td>2.7</td>
<td>1.3</td>
</tr>
<tr>
<td>Lithiated phase</td>
<td>Li</td>
<td>LiC₆</td>
<td>Li₂Ti₅O₁₂</td>
<td>Li₄Si</td>
<td>Li₄Sb</td>
<td>Li₃Al</td>
<td>Li₃Mg</td>
<td></td>
</tr>
<tr>
<td>Theoretical specific capacity (mAh g⁻¹)</td>
<td>3862</td>
<td>372</td>
<td>175</td>
<td>4200</td>
<td>994</td>
<td>660</td>
<td>993</td>
<td>3350</td>
</tr>
<tr>
<td>Theoretical charge density (mAh cm⁻³)</td>
<td>2047</td>
<td>837</td>
<td>613</td>
<td>9786</td>
<td>7246</td>
<td>4422</td>
<td>2681</td>
<td>4355</td>
</tr>
<tr>
<td>Volume change (%)</td>
<td>100</td>
<td>12</td>
<td>1</td>
<td>320</td>
<td>260</td>
<td>200</td>
<td>96</td>
<td>100</td>
</tr>
<tr>
<td>Potential vs. Li (V)</td>
<td>0</td>
<td>0.05</td>
<td>1.6</td>
<td>0.4</td>
<td>0.6</td>
<td>0.9</td>
<td>0.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>

![Weight Percent Silicon](image_url)

![Temperature Chart](image_url)
Our focus: silicon-based anodes

Our focus: silicon-based anodes

\[\sim 300\% \text{ volume expansion} \] during lithium insertion --- pulverization and fast capacity fading of the material.

Critical size = 150 nm

Nanotechnology to the rescue

Use nanoparticles and all problems will be solved?

Poor electrical conductivity

Need a very robust contact to a current collector

Too much surface area leads to large capacity loss in first cycle (SEI formation)

SEI is unstable because of volume change during cycling

Nanotechnology to the rescue

- Need a composite, typically silicon-carbon
- Advanced designs – tight control of structural parameters

Our contribution: Si-Sn-C composites

Why adding tin?
- Low electrical conductivity of Si is a major problem
- Tin is conductive and also has good capacity

Good capacity
Excellent rate capability
Our contribution: Si-Sn-C composites

Working hypothesis: Sn addition improves performance of Si-based anodes

Si nanoparticles + SnCl2 + Polyvinylpyrrolidone (PVP) in ethanol

Coat onto copper foil + Anneal in argon 700°C
Our contribution: Si-Sn-C composites

Materials characterization

- XRD indicates presence of both silicon and tin crystals
- Tin nucleates from SnCl₂ during thermal decomposition of polymer
Our contribution: Si-Sn-C composites

Materials characterization

- TEM – High res TEM confirm that the big particles are silicon and the small ones are tin
- High angle annular dark field and elemental scan further support this conclusion
- Tin content is low (<10% by weight). Most tin is lost during thermal decomposition process (high vapor pressure)
Our contribution: Si-Sn-C composites

Materials characterization

- TEM – High res TEM confirm that the big particles are silicon and the small ones are tin
- High angle annular dark field and elemental scan further support this conclusion
- Tin content is low (<10% by weight). Most tin is lost during thermal decomposition process (high vapor pressure)
- Carbon surrounds/wraps the structure
Our contribution: Si-Sn-C composites

Half-cell performance

- Both Si and Sn are electrochemically active
Our contribution: Si-Sn-C composites

Half-cell performance

- Both Si and Sn are electrochemically active
- Vast improvement compared to control-structure without tin
- Note that tin content is low (2.2% by weight)
- First cycle CE 81% on a highly porous structure
Our contribution: Si-Sn-C composites

Half-cell performance

• Both Si and Sn are electrochemically active
• Vast improvement compared to control-structure without tin
• Note that tin content is low (2.2% by weight)
• First cycle CE 81% on a highly porous structure
• Good rate capability
Our contribution: Si-Sn-C composites

Why does it work so well?

- Substantial decrease in anode impedance
- This is achieved with a very small tin addition
Summary

Silicon-tin-carbon composites have been realized using off-the-shelf components.
Production protocol is simple (mix-and-bake).

Pros: minor tin addition is highly beneficial.
Cons: parameter space is now significantly larger.

Pros: it is very likely that this structure is far from optimal.

About silicon nanoparticle synthesis

- Vacuum (but not UHV) process
- Large reaction volume
About silicon nanoparticle synthesis

From problem to opportunity

About silicon nanoparticle synthesis

- Remarkably simple - reproducible
- High precursor utilization – high production rate
- Easy to scale – large volume plasmas are easy to make

SiH$_4$ or SiCl$_4$

1 gram/hour of <10 nm Si crystals at the lab scale

>80% precursor utilization rate (SiH$_4$-to-NP)

DOE Early Career Research Program
(FES DE-SC0014169)

NSF CAREER Award 1351386

3M - NTFA