

Lower Cost Higher Performance Graphite for LIBs

Prepared by: Dr. Edward R. Buiel President and CEO

Coulometrics, LLC.

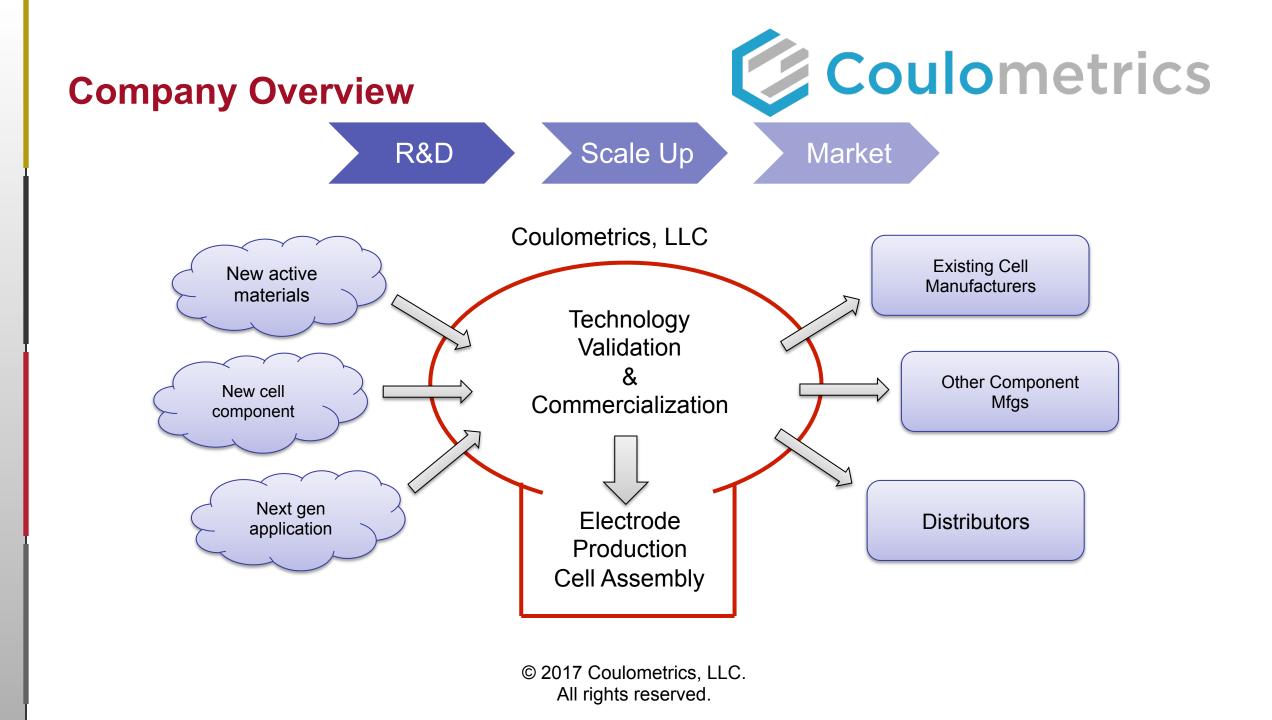
Date: March 23, 2017

PUREgraphite

Outline

- Company overview
- Review of natural graphite resources and flake quality from 12 different locations in the world
- Graphite process development for anode materials
- Full cell testing of new graphite anode materials

Company Overview

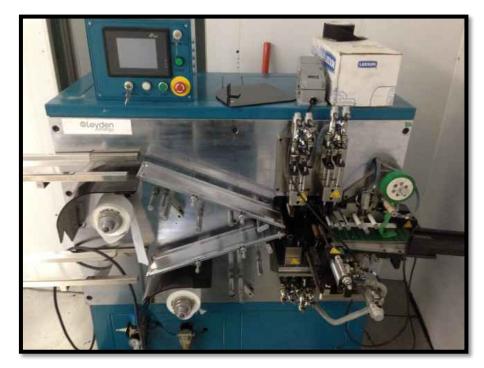


- Advanced Energy Storage Consulting
 - + Started 2011
 - Basic materials R&D
 - Manufacturing / scale-up
 - Systems integration

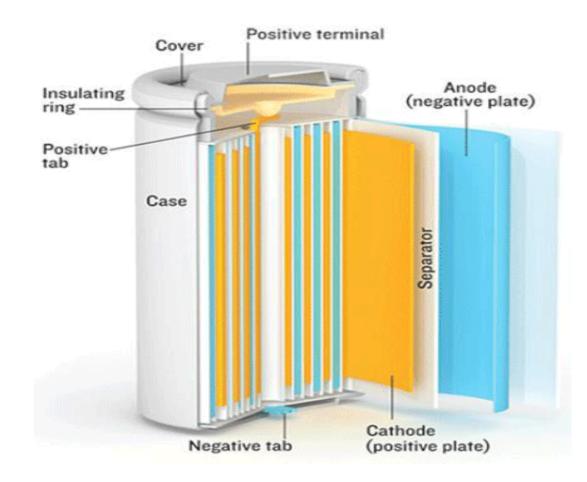
Electrode Coating

Pilot Scale Coating

Production Scale Coating

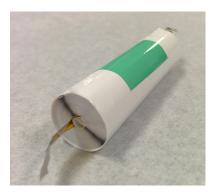

Calendering and Assembly

Electrode Roll Pressing



Cell Winding

18650 Cell Assembly



Cell Testing

- 320 channels of Neware basic cyclers and formation
- 30 channels HPC
- 8 channels x 150A
- 2 channels x 500A

Natural Graphite Resources

USGS:		Mine pro	-
 World total inferred reserve 	United States	2014	<u>2015°</u>
of recoverably graphite: 800 Million Tonnes	Brazil Canada	80 30	80 30
	China	780	780
+ Current production:	India	170	170
1,200,000 tpy (flake and	Korea, North	30	30
amorphous graphite)	Madagascar	5	5
Mainusas	Mexico	22	22
Main uses	Norway	8	8
 Refractory bricks and 	Russia	15	15
linings	Sri Lanka	4	4
0	Turkey	29	32
+ Brake linings	Ukraine	5	5
+ Lubricants	Zimbabwe	7	7
+ Steel making	Other countries World total (rounded)	<u>1</u> 1,190	<u>1</u> 1,190

- + LIB anode materials
 - > 70-80,000 tpy

Natural Graphite Resources

- Large reserves of graphite with companies actively working to develop the resource
- Coulometrics has worked with about a dozen sources all over the world to sample and test the flake

Rigorous Flake Concentrate Analysis

• FLAKE ANALYSIS TESTING:

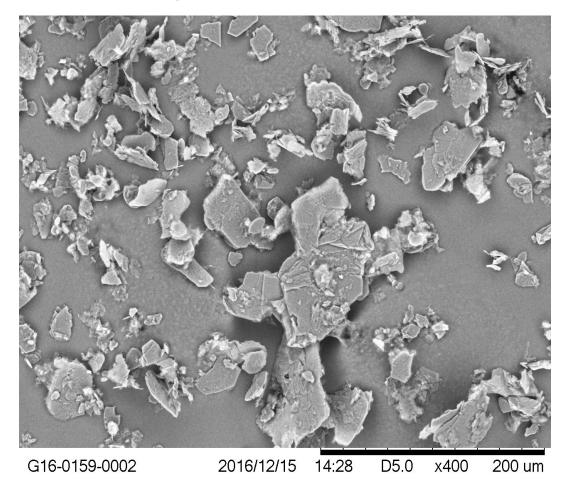
- Sieve samples to sizes shown in Table below.
 - + +50, 50x100, 100x200, 200x400, 400x635, -635 mesh
 - + Measure masses to get flake size distribution (Table 1)
 - + Tap Density and LOI (Table 2)
 - + Measure BET (Table 3)
- Grind samples to -635 mesh
 - + Repeat BET
 - + Add BET graph to report with both sieved and sieved/ground BET data
 - + Complete XRD
 - + Complete ash analysis on materials.
 - + Send samples for PIXE Analysis.
 - + EChem: Complete slurry, electrodes, coin cells, testing

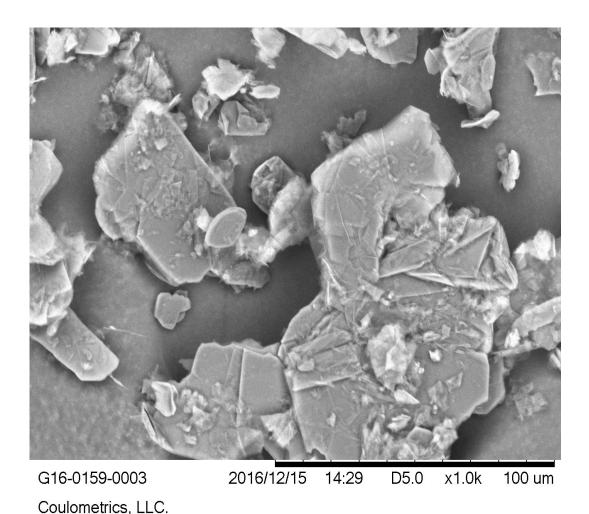
Sieve the Graphite Flake Concentrate Into 6 Different Sizes

Coulometrics Control #	Flake Size (mesh)	Particle Size (mm)	Mass in Sieve (g)	Size Fraction (%)
	+50	0.300	0	0%
	50x100	0.300-0.150	0	0%
G16-0114	100x200	0.150-0.075	7.66	3.4%
610-0114	200x400	0.074-0.037	56.76	25.4%
	400x635	0.037-0.020	98.98	44.2%
	-635	0.020	60.41	27.0%

G16-0114 GSP Ore, Graphite Concentrate Tap & Ash Analysis

ID#	Flake Size	Tap Density	Size Fraction (%)	LOI – Ash Content (% carbon)	BET SA (As Received)	BET SA (Grnd to -635)
	(mesh)	(g/cc)		Average	Avg. (m²/g)	Avg. (m²/g)
	As Received	0.53	NA	96.43	5.36	6.04
	+50	NA	0%		N	A
	50x100	NA	0%		Ν	A
G16-0114	100x200	0.48	3.4%	97.80	3.40	6.55
	200x400	0.45	25.4%	97.53	4.15	6.01
	400x635	0.41	44.2%	96.95	5.08	6.95
	-635	0.40	27.0%	93.99	6.33	N/A


G16-0114 GSP Ore, Graphite Concentrate PIXE Impurity Analysis

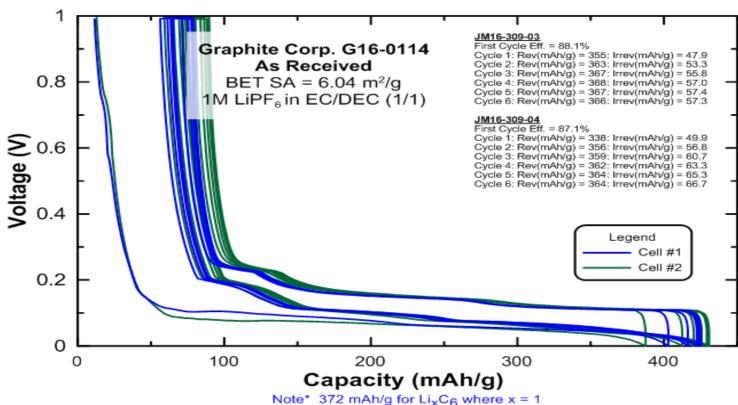

- Significant Impurities including:
 - + S (4560ppm)
 - + Si (7690ppm)
 - + Fe (2400 ppm)
 - + AI (3840ppm)

Carbon	n ID	0	escrip	otion					Na	I	Mg	Al		Si	ĺ	Ρ	S		Cl	К		Ca	Sc	Ti		V	Cr	Μ	In	Fe	Co		Ni	Cu
G16-01	L14	G	raphite	e Corp					367		327	3840	76	590			456	0	62	976	1	.67		15	6		37	6	j	2400			21	107
Zn	Ga	G	e A	s S	e E			Sr	Y		Nb			R	n I	Pd	Ag	Cd	In	Sn	Sb	Te	I	Cs	Ва	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb
10	1		3			5	10			8		36																						
Dy	Но	Er	Tm	Yb	Lu	H	f 1	Га	W	Re	Os	Ir	Pt /	۹u	Hg	ΤI	Pb	Bi	T	n U		otal - ppm												
																						20789												

G16-0114 Graphitized GSP Ore SEM Analysis – 1000X

Coulometrics, LLC.

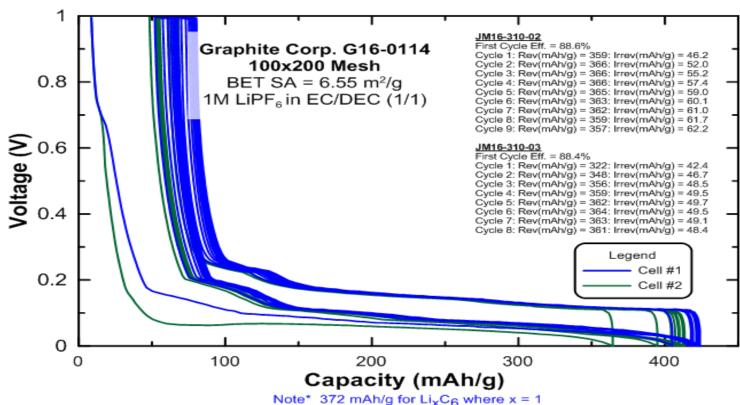
G16-0114: As Received Electrode Preparation


- Electrode Mixing Information:
 - + Active material (G16-0114): 92.0%
 - + Conductive carbon (SFG-6L): 2.0%
 - + Binder (Kynar HSV900/NMP): 6.0%

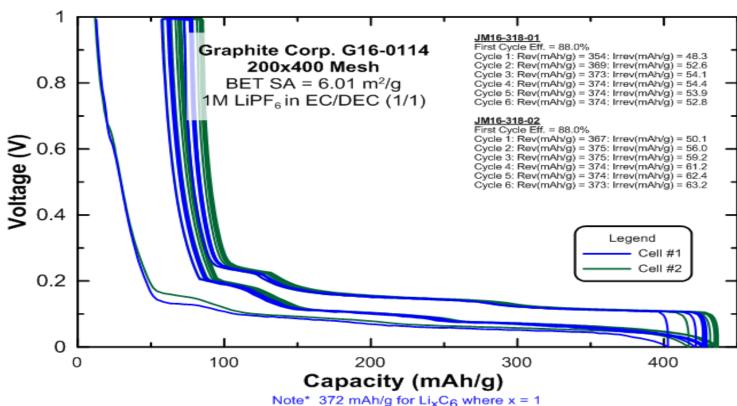
• Electrode Properties

- + Active mass: 92.0%
- + Loading: 13.76 mg/cm²
- + Calendered Density: 1.700 g/cc

G16-0114: As Received 1M LiPF₆ in EC/DEC (1:1) Additives: None Electrochemical Data

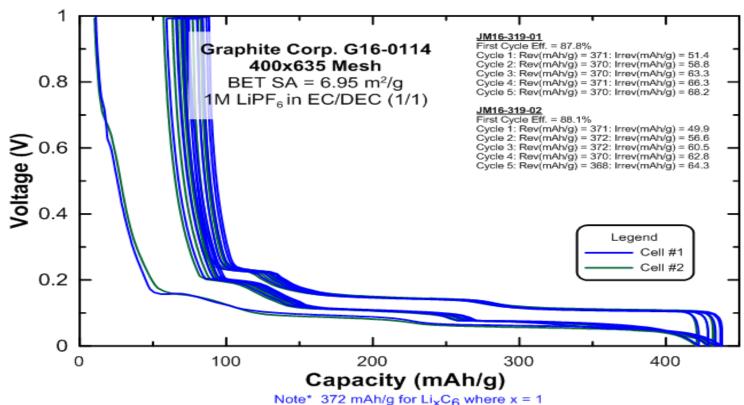

- C/20 cycling
 - + Rev. Cap
 - > 359 mAh/g
 - + Irrev. Cap.
 - > 48 mAh/g
 - + First cycle efficiency
 - > 87.6%

G16-0114: 100x200 Mesh 1M LiPF₆ in EC/DEC (1:1) Additives: None Electrochemical Data

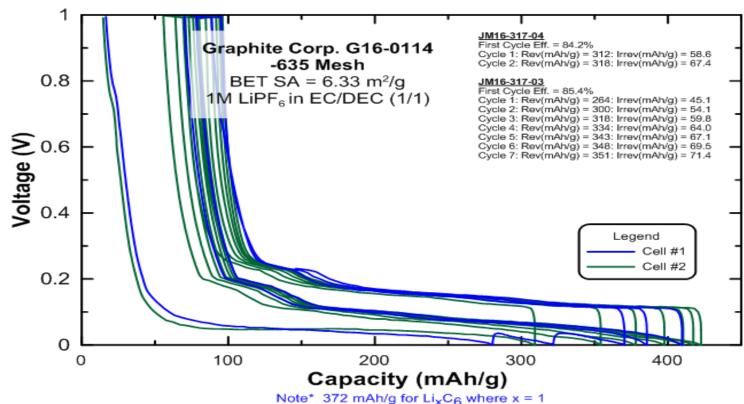


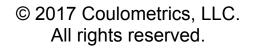
- + Rev. Cap
 - > 358 mAh/g
- + Irrev. Cap.
 - > 42.4 46.2 mAh/g
- + First cycle efficiency
 - > 88.5%

G16-0114: 200x400 Mesh 1M LiPF₆ in EC/DEC (1:1) Additives: None Electrochemical Data


- C/20 cycling
 - + Rev. Cap
 - > 367 mAh/g
 - + Irrev. Cap.
 - > 48.3 50.1 mAh/g
 - + First cycle efficiency
 - ▶ 88.0%

G16-0114: 400x635 Mesh 1M LiPF₆ in EC/DEC (1:1) Additives: None Electrochemical Data




- + Rev. Cap
 - > 365 mAh/g
- + Irrev. Cap.
 - > 49.9 51.4 mAh/g
- + First cycle efficiency
 - ▶ 88.0%

G16-0114: -635 Mesh 1M LiPF₆ in EC/DEC (1:1) Additives: None Electrochemical Data

- C/20 cycling
 - + Rev. Cap
 - > 344 mAh/g
 - + Irrev. Cap.
 - > 59.6 mAh/g
 - + First cycle efficiency
 - > 84.2 %

G16-0114 GSP Ore, Graphite Concentrate Electrochemical Data Summary

	Flake Size	eChem Results									
ID#	Ground to -635 mesh	Rev. Capacity (mAh/g)	Irrev. Capacity (mAh/g)	First Cycle Efficiency (%)							
	As Received	359	47.9	88.1							
	+50	Not enough material after sieving									
	50x100	Not enough material after sieving									
G16-0114	100x200	358	42.4	88.6							
	200x400	367	48.3	88.0							
	400x635	365	49.9	88.1							
	-635	344	58.6	85.4							

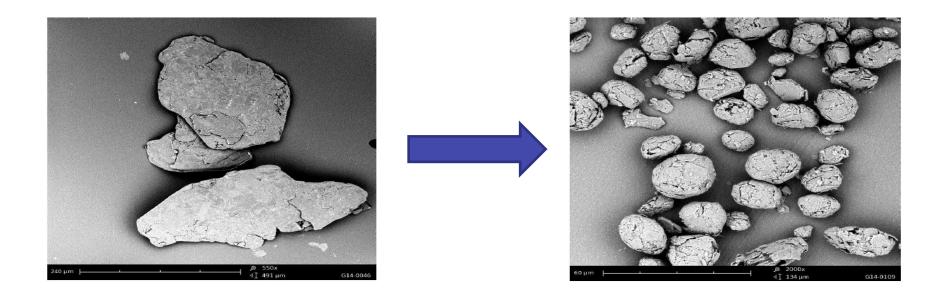
Note: Numbers subject to change as cells cycle more.

Natural Graphite Resources

- Repeated for 12 different deposits from junior mines all over the world
- All deposits showed similar results
 - + 94-98% purity
 - + Rev capacity 355-365 mAh/g
 - + Range of flake sizes

Graphite Process Development

- Standard Process used in China Today (95% of worlds Natural Graphite)
 - + Flake Concentrate
 - + Spheronize Graphite
 - + Acid purification process
 > HF/HCI/H₂SO₄
 - + Pitch coating
 - + Calcination



- New Process (more suitable for use in the United State)
 - + Flake Concentrate
 - + Spheronize Graphite
 - + Thermal Purification
 - + CVD Coating

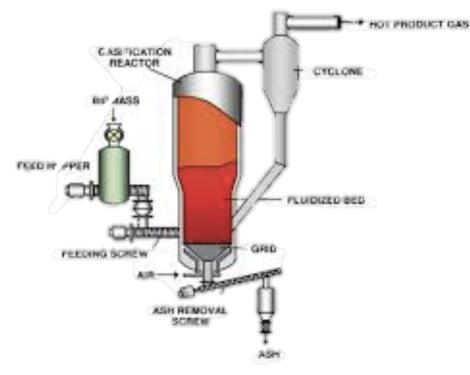
Spherical Carbon Process Development

- Spheronizing
- Purification
- Coating

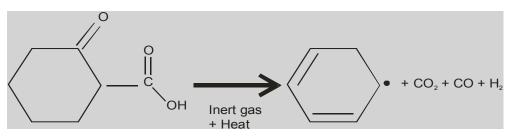
Thermal Purification Temperature: 2600-2950°C PIXE Analysis

- Significant Impurities including:
 - + AI, Si, and Mo : 15 50ppm
 - + AI (50ppm), Si (22ppm), Mo (15ppm)
 - + Fe <10ppm
 - + Ni <5ppm
 - + V <10ppm

Ash Test = 99.99% Carbon



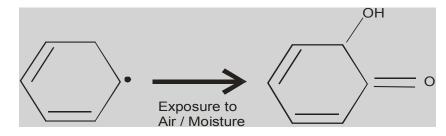
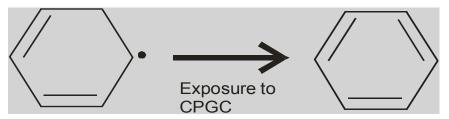
Carbor	n ID	D	escrip	tion					Na	M	Ţ.	Al		Si		Р	S		Cl	К	C	Ca	Sc	Ti	V	/	Cr	Mn		Fe	Co	ſ	Ni	Cu
G16-02	159	Gi	raphite	Corp Pl	=							50		22											8	;				5		1	.8	
Zn	Ga	G	e A	s S	e E	ßr	Rb	Sr	Y	Zr	Nb	N	10	Тс	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Cs	Ва	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb
												1	.5																					
Dy	Но	Er	Tm	Yb	Lu	Hf	Т	а	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Th	U		tal - pm												
																					10)1.8												

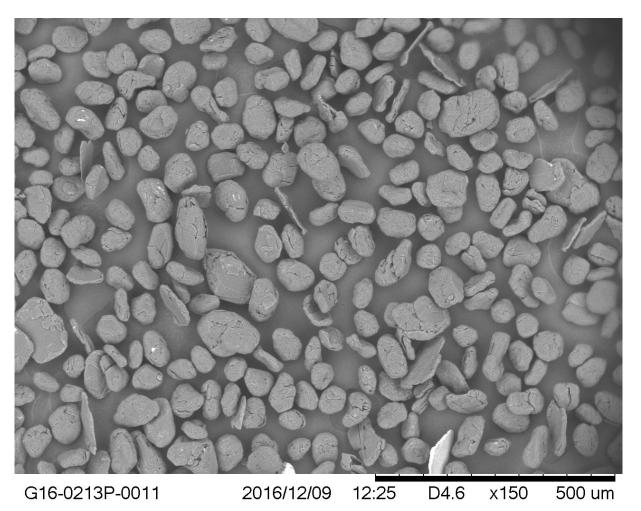

CVD Coating

- Reduce surface area
- Eliminate functional groups

Proprietary Information

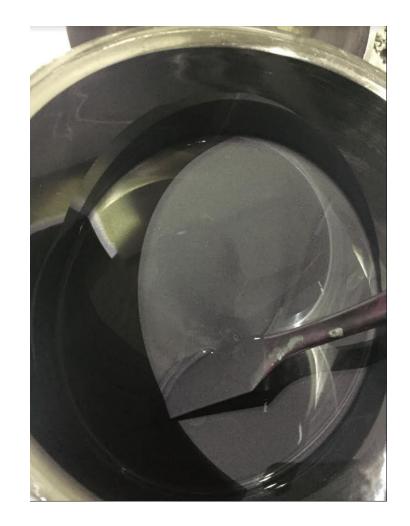
Figure 1: Heat treatment process used to eliminate surface functional


Figure 2: Residual carbon radicals react to form OH and O containing and are the source of H₂O in the cell.

Natural Graphite Product

ID	Analysis	Value	Units
	Tap Density	1.06	g/cc
	BET Avg.	3.73	m²/g
	D ₁₀	11.09	
	D ₅₀	μm	
G16-0114	D ₉₀	32.17	
	LOI – Ash Content	>99.995	% Carbon
	Capacity	365	mAh/g
	1 st Cycle Efficiency	94	%



Coulometrics, LLC

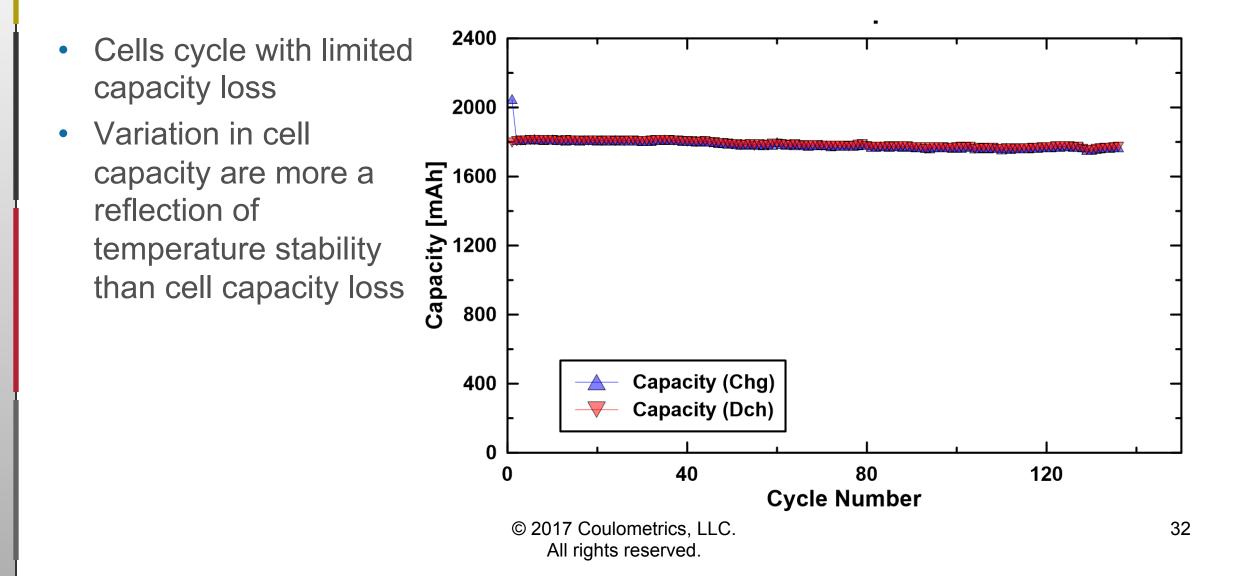
Slurry Development

- Mix graphite with conductive additives to develop a slurry suitable for slot-die coating
- Properties:
 - + Carbon black must be well dispersed
 - + Good stable dispersion
 - + No agglomeration
- Stable dispersions are developed for each graphite material regardless of how long it takes

Cell Assembly and Testing

- 18650 batteries are assembled
- Cathode:
 - + NMC 111
- Electrolyte
 - + EC/EMC 3:7 + 1M LiPF₆
 - + Additives:
 - Standard LIB Additives
 - Coulometrics proprietary additives for improved SEI layer formation and improved life
- Typical capacity:
 - + 2.2-2.4 Ah

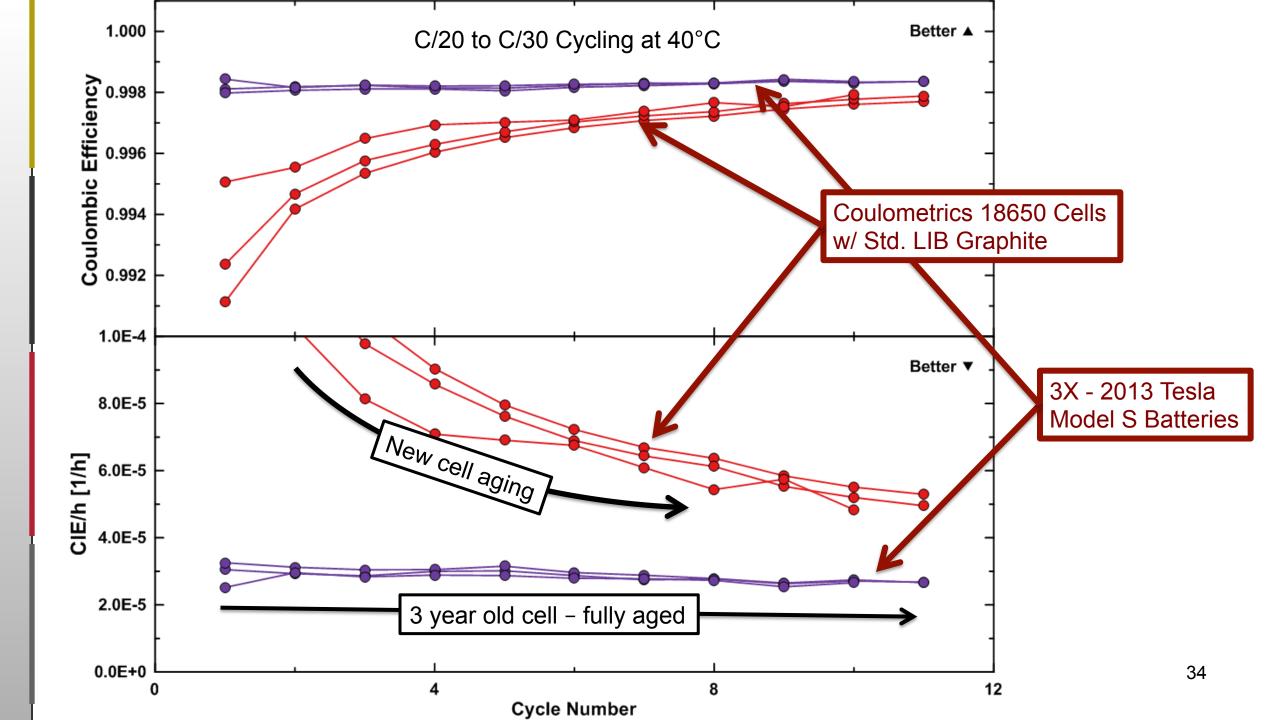
Cell Testing

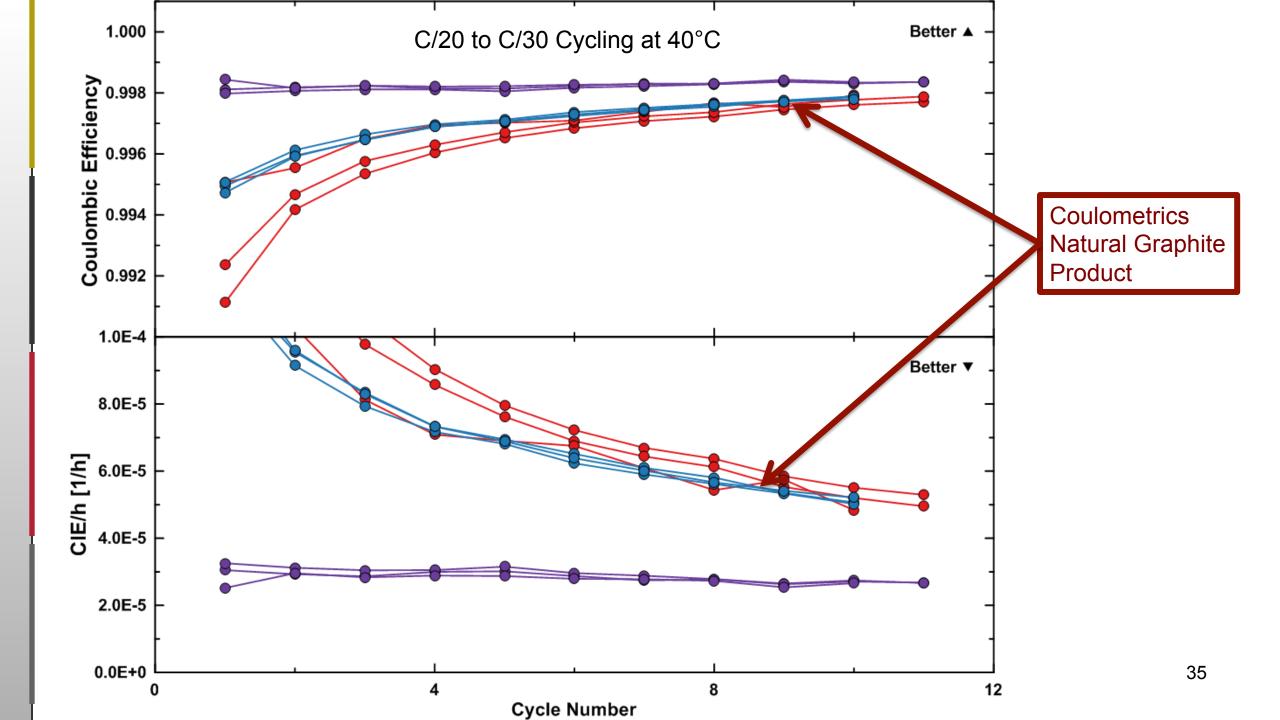


- Initial formation is completed using Neware system
- Cell capacity is measured
- Cell is cycled 5-10 times

Standard Cell Cycling at 21°C

Cell Cycling




- How do you test for cell life?
 - + If you cathode / anode are good (and they should be) then the same amount of lithium
 - + Cell will cycle with almost constant capacity and then die quickly
 - Can take 1-2 years to cycle a cell at 40°C
 - + Higher temperatures can lead to new failure mechanisms
- What can you do?
 - + High Precision Coulometry
 - Measure loss of electrons per cycle due to oxidation/ reduction of the electrolyte

Cycles flat **Dies Quickly** Use HPC (High Precision Coulometry) to determine this point.

Cycle Number

Capacity

GRAPHITE CORPS COULOMETRICS JOINT VENTURE

 Coulometrics and Graphite Corps have agreed to develop new graphite materials for LIBs under a new company called: PUREGraphite

+ Environmentally friendly process
 > 2018 → 1,000 tpy
 > Easily scalable to over 100,000 tpy

National Science Foundation WHERE DISCOVERIES BEGIN

This work was supported by: **National Science Foundation** under Grant No. 1315040 (CVD Process for Coating Graphite)

and by: **Department of Energy** under Grant No. DE-SC0015953 (High yield spheronization).

Thank You!

Contact information:

Dr. Edward R. Buiel Coulometrics, LLC 423-954-7766 ebuiel@coulometrics.com