Recent Progress in Lithium-Sulfur-Batteries

Prof. Dr. S. Kaskel
Fraunhofer Institute for Material and Beam Technology IWS

AABC Europe 2017
January 31, 2017, Mainz
Progress in Lithium-Sulfur-Batteries

Overview

- Introduction
- Status of Li-S-technology
- Technology development
 - Cathode chemistry
 - Anode materials
 - Separator
 - Role of electrolyte
- Conclusion
Future potential: high energy plus cost savings

Sulfur as next generation battery material

Theor. specific cathode energy
(Voltage x capacity)
- NMC: ca. 630 Wh/kg
- Li$_2$S: 2.550 Wh/kg

Costs
- NMC: 23 €/kg
- Sulfur: << 1 €/kg

Cathode materials
- LiCo$_{1/3}$Ni$_{1/3}$Mn$_{1/3}$O$_2$
- LiFePO$_4$
- Li$_4$Ti$_5$O$_{12}$

Anode materials
- Hardcarbon
- Graphite
- Si/C-Komposite
- Si
- Li

Capacity (mAh/g)
Components of Li-S cell

- Electrolyte
- Separator
- Lithium Metal
- Current collector (+)
- Polymer-Binder
- Conductive additive
- Sulfur/carbon composite

Li-S-cell (~330 Wh/kg)
Li-S-Battery: Introduction
Achievable energy density: Basic estimations on stack level

Cathode properties
- 25 % cathode porosity (discharged)
- 47 % cathode porosity (charged)
- Electrolyte excess for volume change
- 1000 mAh/g (Li$_2$S), 2,1 V
- 65 wt-% Li$_2$S content in cathode
- Areal capacity: 5 mAh/cm2
- Li-Anode: 100 % excess

Energy density (charged state): 672 Wh/kg / 840 Wh/L
Status of Li-S technology

Examples of existing prototype cells

- **Li-S-cell (~350 Wh/kg)**
- **Li-S-cell (up to 325 Wh/kg, 320 Wh/L)**
- **Li-S-cell (up to 330 Wh/kg)**

- Energy density is far from its theoretical limit
- Cycle life is limited to < **50 cycles** for the high energy cells
- However, applications are already there:

High Altitude Pseudo-Satellite (HAPS)

Main cause of low cycle life: Lithium anode surface reactions

Degradation mechanisms

- Depletion of org. electrolyte, cells dry out
- Dendritic or porous structure causes shortcuts
- Self-discharge and active material loss through polysulfide shuttle

Polysulfide Shuttle:
Chemical reduction of dissolved PS at anode surface

→ LiNO$_3$-Additive suppresses shuttle
Focus topic Li-S-Battery at Fraunhofer IWS, Dresden

Anodes

Cathodes

Electrolytes

Separators

Mixing

Coating

Tests

Laser-Cutting

Assembly
Cathode Materials Development

Reducing PS Shuttle by Tailoring porous carbons

Up to

SA = 3000 m²/g

PV = 3-4 cm³/g

Anode materials development

- Hard carbons form stable SEI in ether electrolytes
- 4000 reversible cycles achieved
- Recommended for cathode evaluation

Projected: up to \textbf{190 Wh/kg}

Ion-selective separator coatings

- Nafion as cation-selective polymer coating to reduce polysulfide shuttle

I. Bauer et al., J. Power Sources, 2014 251, 417–422, DOI:10.1016/j.jpowsour.2013.11.090
Cathode mechanism in ether electrolyte requires dissolution of polysulfides

Most studies use >> 5 µl Electrolyte / mg S

Saturated PS-solution in DME/DOL

LiNO$_3$: SEI former

LiTFSI: salt

DOL Gn (n ≥ 1); DME (n = 1)
The role of LiNO$_3$
Standard electrolyte additive in DME/DOL

LiNO$_3$: Directing SEI formation in Li-S cells

- Surface film: inorganic and organic species (LiN$_x$O$_y$, ROLi + ROCO$_2$Li)
- Compact and homogenous surface film formed with LiNO$_3$
- Enhanced stability of lithium anode and improved cycle life

LiNO$_3$ is consumed during cycling

Electrolyte content determines cycle life

- Electrolyte depletion and **LiNO$_3$ consumption** is major cause for low cycle life
- Excess electrolyte can enhance cycle life drastically

\[
E/S = \frac{\text{Electrolyte Volume}}{\text{Sulfur Mass}}
\]

Most research papers use $E/S >> 5$ or not even mention it

M. Hagen et al. „Lithium–Sulfur Cells: The Gap between the State-of-the-Art and the Requirements for High Energy Battery Cells”
DOI 10.1002/aenm.201401986
Status of Li-S technology

Inactive materials dominate the mass of Li-S cells

Li-S cathode
- Coating (S/C): 100 µm
- Areal capacity: 5 mAh
- Porosity: 65%
- Cell voltage: 2,1 V

Li-Ion cathode
- Coating (NCA): 100 µm
- Areal capacity: 5 mAh
- Porosity: 25%
- Cell voltage: 3,7 V

Weight distribution

17,5 wt-% active material
- Al
- S
- B+C
- E

76 wt-% active material
- Al
- NCA
- B+C
- E

Fraunhofer IWS Dresden
New Electrolytes with low PS solubility (without LiNO$_3$)

Reducing electrolyte content

- Li-S pouch cell with ref. cathode, IWS electrolyte
- 3.4 µL/mg$_S$ vs. 2.5 µL/mg$_S$
- New electrolyte shifts the limit for minimum electrolyte content!

![Graph showing electrolyte content and capacity over cycles](image-url)

- Real capacity ~ 2.5 Ah at 12 h rest
- Real capacity ~ 2.7 Ah at 36 h rest

Patent pending
Electrolytes with low PS solubility

- **Reduced anode degradation**
- **Improved safety**
 - Smooth Lithium deposition
 - Low flammability

1.5M LiTFSI / 0.25M LiNO₃ in DME/DOL

IWS electrolyte

Li anode, 89 cycles, DME/DOL

Li anode, 100 cycles, new El.

Work in progress
Safety Tests: Lithium-Sulfur Pouch Cell (IWS electrolyte)

- Standardized Tests by SGS Germany GmbH (München)
 - Thermal Stability (130 °C), Overcharge, Simulated Internal Short Circuit, Nail Penetration, Short Circuit
 - no „Thermal Runaway“
 - max. Hazard Level (according to EUCAR): HL 3
- Significantly improved safety of Li-S-Cells, as compared to Li-Ion-Cells with same cell format
- Li-Metal burning at $T > 190 \, ^\circ C$; only if externally heated

Work in progress
Status of Li-S technology

- Li-S-cells reach 350 Wh/kg → lightest accumulator today
- Volumetric energy density currently lower than Li-Ion
- Cycle life in high energy cells is limited today to 50-100 cycles
- Available cells not yet suitable for automotive
- Potential for step-change
 - Anode
 - Cathode
 - Electrolyte
 - Separator
- Niche markets are growing and may expand
Related projects

Thanks to co-workers, partners and funding agencies!

Li-S-Battery-Team at IWS
6th Workshop »Lithium-Sulfur Batteries«

- Annual conference in Dresden
- More than 150 participants from industry and academia

Save the date: November 6–7, 2017
Thank you for your attention!

Prof. Dr. S. Kaskel
Dr. Holger Althues
Fraunhofer IWS
Winterbergstraße 28
01277 Dresden, Germany

Phone +49 351 83391-3476
Fax +49 351 83391-3300
E-Mail holger.althues@iws.fraunhofer.de

www.iws.fraunhofer.de
Status and Potential of Li-S-Technology

<table>
<thead>
<tr>
<th>SoA (LIB)</th>
<th>SoA (Sion-Li-S)</th>
<th>Prognosis (Li-S) – GM*</th>
<th>Prognosis (Li-S) BMW**</th>
<th>Prognosis (Li-S) - IWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grav. Energy density (Cell)</td>
<td>140 - 250 Wh/kg</td>
<td>350 Wh/kg</td>
<td>550 Wh/kg</td>
<td>419 Wh/kg</td>
</tr>
<tr>
<td>Vol. Energy density (Cell)</td>
<td>280 - 670 Wh/L</td>
<td>320 Wh/L</td>
<td>620 Wh/L</td>
<td>644 Wh/L</td>
</tr>
</tbody>
</table>

Li-Ion-Cells (examples)

- LG Pouch-Cell (Opel Ampera): 140 Wh/kg
- Panasonic 18650 (Tesla): 243 Wh/kg

Li-S-cells

- Sion-Power: 350 Wh/kg (cell) 260 Wh/kg (pack)
- Oxis-Energy: -5 – 80°C ULC: 300 Wh/kg, 200 Wh/L LLC: 180 Wh/kg, 170 Wh/L

* T. Greszler, GM **Beyond Lithium Ion 5, Berkeley, CA 2012**
** Dr. P. Oberhumer, BMW **Li-S-Battery-Workshop 2013, Dresden**

ULC = Ultralight Cell
LLC = Long life cell