

Advances and Remaining Challenges in Electrolytes for Solid State Batteries

Presented at AABC Europe Mainz, Germany

January 31, 2017

Douglas Campbell, CEO doug.campbell@solidpowerbattery.com (720) 300-8167

Solid State Battery Opportunity

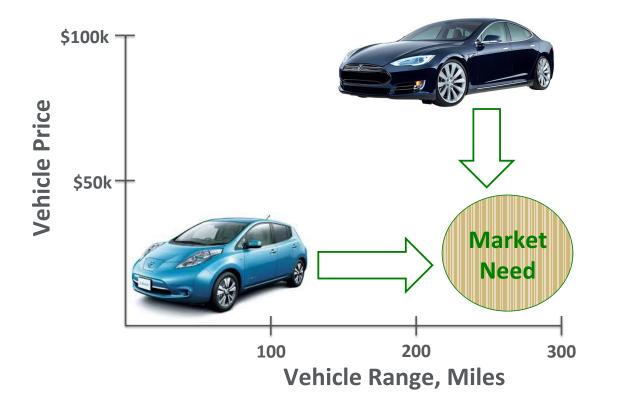
Solid Power

Solid-state batteries are a leading candidate to surpass Li-ion in energy, safety and cost:

<u>Energy</u>: Greater vehicle range / device life <u>Safety</u>: Improved Product Reliability

Cost:

1.Eliminate battery cooling systems
2.Simplified cell- and pack-level designs
3.Abuse & manufacturing quality tolerance


"With a solid-state battery you open up the field of metallic anodes, and make possible a big jump in energy density. That would be a game changer."*

- Jeff Chamberlain, JCESR / ANL

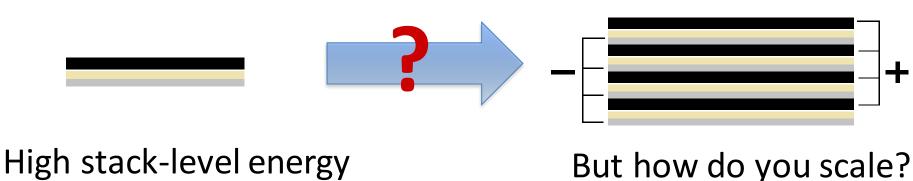
*"Imagine batteries that do not catch fire and do not lose storage capacity. That is the promise of solid-state batteries"**

- Gerbrand Ceder, MIT

*Motavalli, J, "Technology: A Solid Future.," Nature 526, S96–S97 (29 October 2015)

Solid-state allows for the parallel pursuit of high energy density and safety

- Non-flammable, high temperature stability
- Benign failure under abuse conditions (e.g., puncture, overcharge, etc.)
- 5V+ stable voltage window
- Long calendar life
- Enables entirely new classes of electrode materials
- Allows for more packaging options (bipolar designs, unpackaged cells, etc.)


SOLID-STATE BATTERY TYPES

Thin Film Batteries

• Several mAh or less

- Typically based on lithium phosphorus oxynitride (LiPON)
- Processing methods include magnetron sputtering, chemical vapor deposition (CVD), pulsed laser deposition (PLD), thermal evaporation, and various printing methods
- Ideal for microbatteries: sensors, smart cards, embedded electronics, medical devices, and RFID applications

Bulk Solid-State Batteries

 Higher areal cathode capacity loadings (mAh/cm²) and current densities (mA/cm²)

- Electrolyte/separator materials include poly(ethylene oxide) (PEO), glassy or ceramic Li-P-S, oxides and phosphates with garnet, perovskite, or NaSICON structures
- Materials produced as powders or melts and processed using extrusion, compaction or tape casting combined with sintering, or various coating techniques

More scalable, but high current densities and non-ideal material layers pose issues

• Rate capability limitations

- Conductivity drops with temperature
- No liquid to conform to interparticle and interlayer interfaces
- High C-rates require higher current densities than for thin films
- Cycling with Li metal anode
 - Separator and/or any protection layers must be dense, stiff, Li⁺-conductive, and chemically compatible
 - Lithium can propagate across open pores or grain boundaries
 - May require conservative charge rates and temperatures
- Other miscellaneous
 - \circ $\,$ Needs to approach cost parity with Li-ion $\,$
 - \circ $\,$ Higher stack pressure may be needed than for Li-ion
 - Layer thicknesses and material loadings must be appropriate for high energy density

SOLID-STATE EXISTS TODAY (WITH COMPROMISES)

Infinite Power Solutions*			
	Units	MEC201	
Open Circuit Voltage (OCV)	V	4.1	
Package Size/Footprint (1)	in. mm	1.0 x 1.0 25.4 x 25.4	
Package Thickness	in. mm	0.007 0.17	
Typical Internal Resistance	Ω	35	
Maximum Continuous Current	mA	40	
Nominal Capacity Options	mAh	0.7 1.0	
Equivalent Energy in Joules	J	10 14	
Typical Recharge Time to 90% (at 4.1V CV)	Min.	15	
Operating Temperature Range	°C	-40 to +85	
Operating/Shelf Life	Years	>15	
Recharge Cycles (2)		100,000	
Typical Charge Loss/Year		2%	

- Based on thin film lithium phosphorus oxynitride (LiPON) electrolyte
- Low conductivity but stable against Li
- Processed using vacuum deposition

Thin film separator needed to reach moderate resistance

Limited to small form factors

Low 35 Wh/L due to thick substrate

Excellent cycling stability

http://www.cytech.com/products-ips

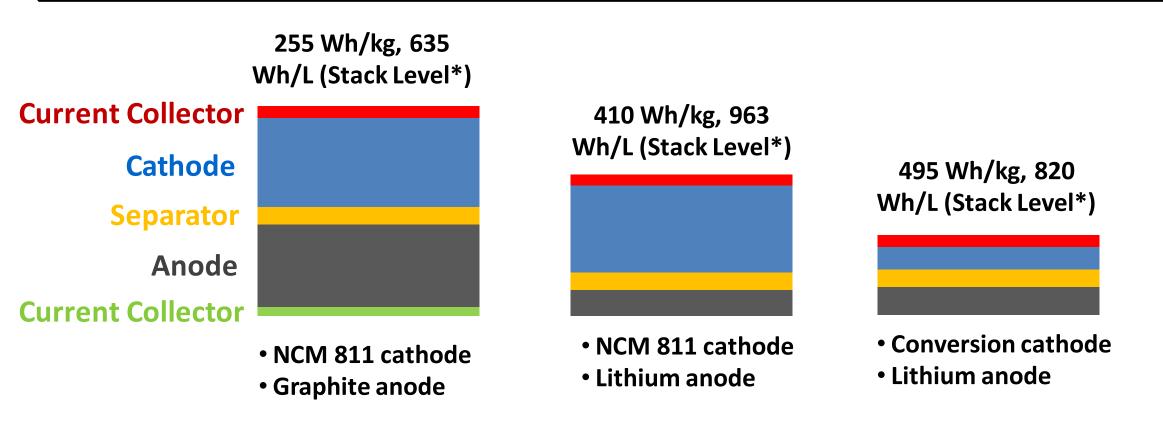
SOLID-STATE EXISTS TODAY (WITH COMPROMISES)

Solid Power

LMP	Battery	Characteristics
Battery		

Volume (L)	300			
Weight (kg)	300			
Electrical Specifications				
Energy	30KWh			
Peak Power	45kW (30s)			
Nominal Voltage 410V				
Thermal Characteristics				
Internal Temperature	60°C - 80°C			
Ambient Temperature	-20°C - +160°C			

- Based on Poly(ethylene oxide) (PEO)
- Low conductivity requires high cell temperature
- Can safely use Li metal if charge and discharge conditions tightly controlled


Modest 100 Wh/kg and 100 Wh/L

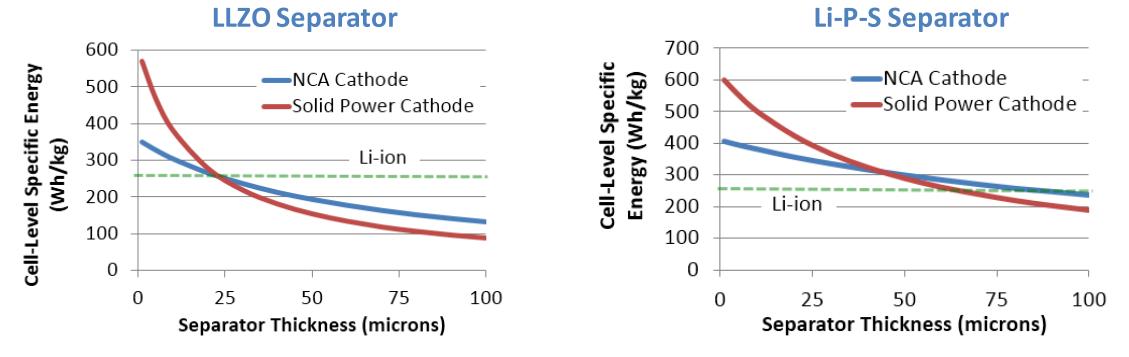
Scalable Modest 150 W/L peak power

Narrow temperature window

http://www.bluecar.fr/les-batteries-Imp-lithium-metal-polymere

Li metal anode is key to solid-state cells matching and surpassing Li-ion cell-level energy density

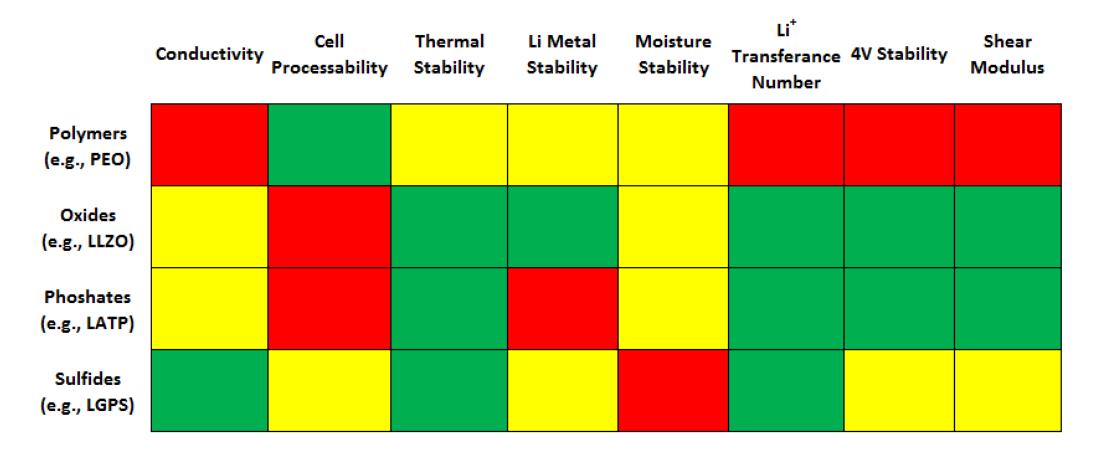
*Includes cathode, anode, separator, and current collectors. Assumes 20 micron separator and 4.0 mAh/cm² capacity loading



- High proportion of current carried by Li⁺ rather than anion (transference number)
 - \odot Prevents concentration effects that lead to onset of dendrites
- Mechanically stiff separator
 - \circ Shear modulus ≥~2X that of Li predicted to promote smooth plating
- Low current density
 - \odot More uniform current distribution and no concentration effects
- Separator stable with Li metal
 - \odot Stable uniform interface promotes smooth plating
- Thick separator
 - \odot Increases distance of Li propagation before shorting
- High temperature
 - Increases electrolyte and interface conductivity while decreasing Li shear modulus

SEPARATOR THICKNESS

- Thin separator needed to realize energy density gains
- Thickness more critical for dense electrolytes
- Thin separators more difficult to process and more susceptible to failure due to Li "dendrites"



Assumes large-format pouch cell with 3.0 mAh/cm² cathode loading and 30µm Li anode doubling as current collector

- Solid Power
- High ionic conductivity: 0.2 10 mS/cm at room temperature depending on cell design
- 2. Negligible electronic conductivity
- **3. Electrochemically stable against Li metal and cathode:** bi-layer separators decouple anode and cathode stability needs but also increase cost and complexity
- 4. Processable into thin layers <50 μm across large areas
- 5. Promotes "dendrite-free" plating of Li metal
- 6. Non-prohibitive cost

No reported solid electrolyte has satisfied every requirement

COMPARISON OF ELECTROLYTES

SOLID POWER TECHNOLOGY

Solid Power

Robust Separator

Thin layer offers anode and cathode compatibility using scalable, nonflammable electrolyte materials.

Broad Cathode Compatibility

Compatible with conventional intercalation and more advanced conversion reaction cathode chemistries

Solid Power

Li Metal Anode

Provides high capacity, voltage, and discharge rate capability.

Simple Cell Architecture

Allows for inexpensive manufacturing and minimization of passive mass and volume.

Sulfide-based solid electrolytes possess the best combination of performance and manufacturability Solid Power's solid electrolyte exhibits one of the highest known conductivities in a highly processable, lithium-metal stable system

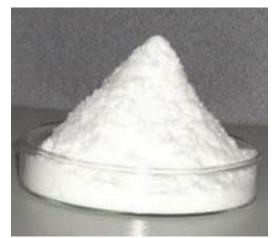
Strength		Conductivity	Cell Processability	Thermal Stability	Li Metal Stability	Moisture Stability
Neutral Weakness	Polymers (e.g., PEO)					
	Oxides (e.g., LLZO)					
Solid Power's	Phoshates (e.g., LATP)					
Focus	Sulfides (e.g., LGPS)	**			**	Requires Dry Room Processing

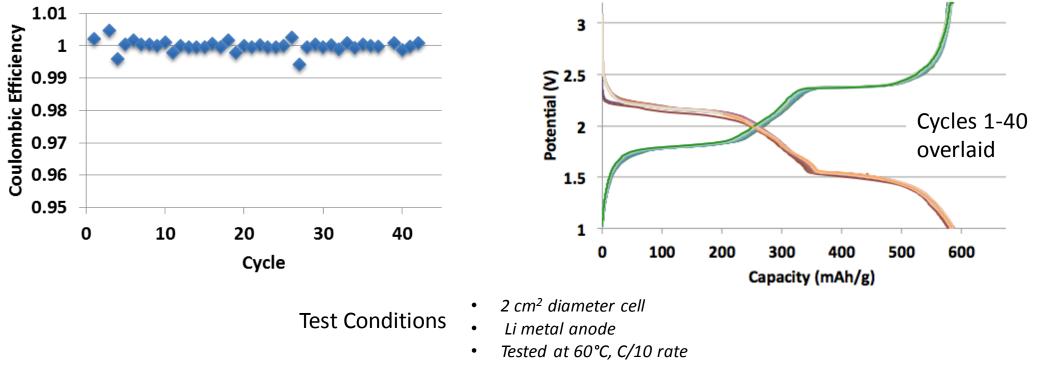
**Unique to Solid Power

Solid Power's all solid-state rechargeable batteries represent a higher energy, safer (& hence, lower cost at pack-level) alternative to current Lithium-ion batteries

Parameter	Lithium-Ion	Solid Power	
Energy (Wh/kg)	150-260 \longrightarrow 2-3X Improvement \longrightarrow	250-500 (cathode dep.)	
Energy (Wh/L)	400-600 \longrightarrow 1-1.5X Improvement \longrightarrow	650-1000 (cathode dep.)	
Power (W/kg)	100-2000	>500 (temp. dependent)	
Cycles	>1000	>1000	
Safety	Acceptable w/ Features	Excellent	
Shelf Life	2-8 years	10+ years	
Temp. Operation	-20-60°C	-20 – 150°C	

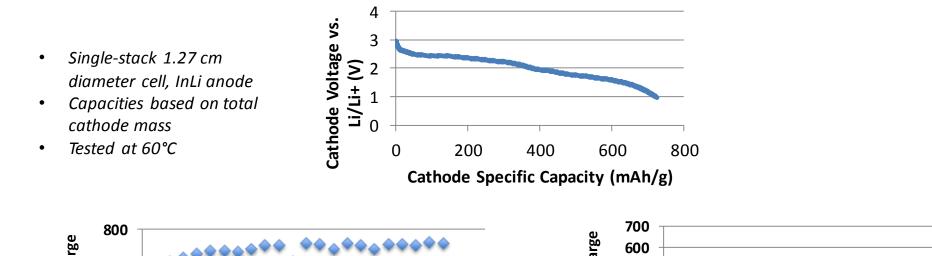
Cell Performance Roadmap



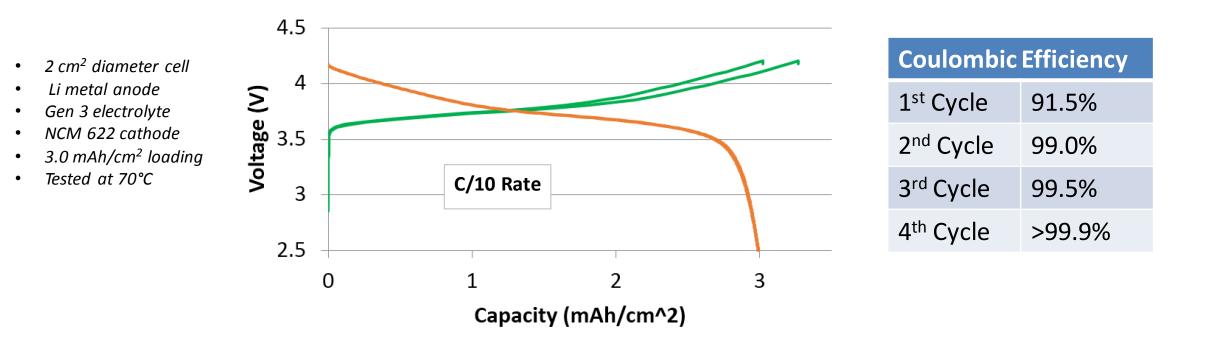

Focused on meeting or exceeding Li-ion in every performance metric by 2020						
	Energy Wh/kg	250	300	400	500	500
	Energy Wh/L	500	600	800	1,000	1,000
	Cycles	100	250	500	1,000	2,000
	Temperature	60°C	25°C	25°C	-20°C	-20°C
		2016	2017	2018	2019	2020

SOLID POWER SULFIDE SOLID ELECTROLYTES

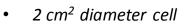
- <u>Best known combination of electrolyte stability,</u> <u>conductivity and processibility</u>
- Room temperature conductivity up to 5 mS/cm (cold compacted) while retaining Li metal stability



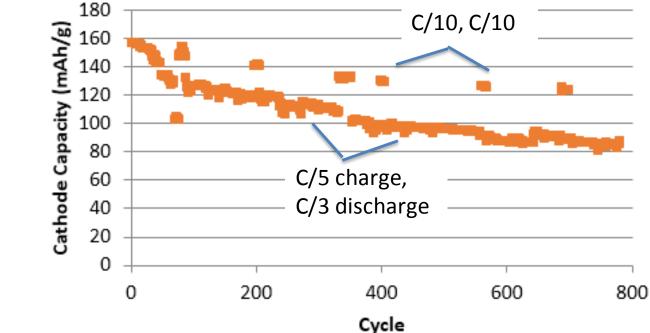
Solid Power High Capacity Cathodes


- Early work focused on cathodes with specific capacities >600 mAh/g
- Excellent stability and cycle life at laboratory scale
- Long cycle life in 1+ Ah cells requires additional development

Solid Power – Oxide Cathodes

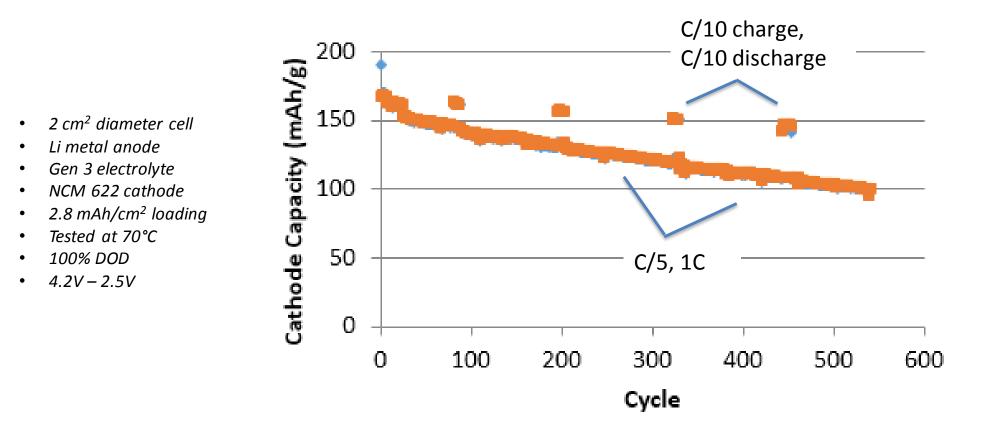

- Electrolyte compatible with surface-treated 4V-class oxide cathodes
- High conductivity allows for practical cathode loading levels and a wide temperature range
- High coulombic efficiency from outset of cycling with Li anode

LONG-TERM CYCLING

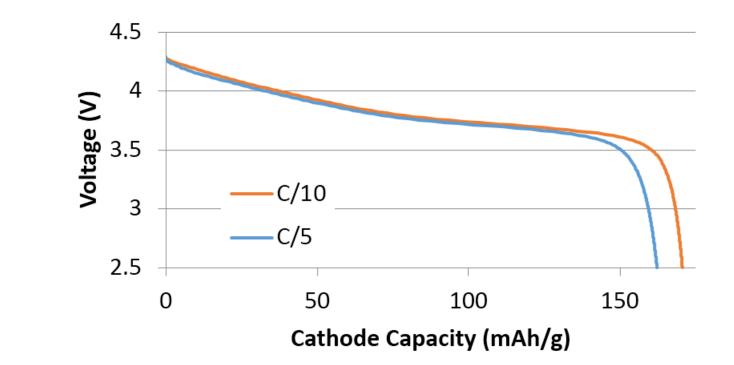

- Stable resistance and capacity for cells with Li metal anode and high-nickel NCM cathode
- 161 mAh/g based on NCM 622 mass with 4.2V charge voltage (92% utilization based on 175 mAh/g theoretical capacity)
- 90% capacity retention cycle 200, 85% retention cycle 350, 80% retention cycle 680

- Li metal anode
- Gen 3 electrolyte
- NCM 622 cathode
- 3.0 mAh/cm² loading
- Tested at 70°C

4.2V - 2.5V


• 100% DOD

1C DISCHARGE RATE CYCLING

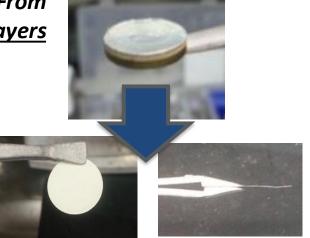

• 168 mAh/g based on NCM 622 mass at C/10 rate with 4.2V charge voltage

- 1C rate discharge capacity retention of 86% compared to C/10 capacity
- 96% capacity retention through 85 cycles, 87% through 450 cycles

ROOM TEMPERATURE CYCLING

- 170 mAh/g based on NCM 622 mass with 4.3V charge voltage
- Practical cathode loading of 2.9 mAh/cm²
- Total cell ASR of 40 ohm*cm²

- 2 cm² diameter cell
- Li metal anode
- Gen 3 electrolyte
- NCM 622 cathode
- Tested at room temp.
- C/10 charge rate
- 2.9 mAh/cm² loading


Cell Processing

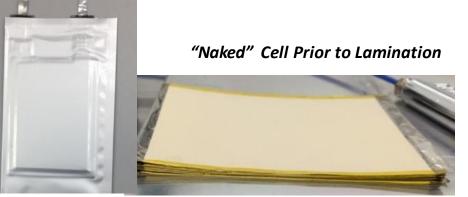
- Early work focused on "pelletized" cells – an un-scalable format
- Cathode and separator materials particles optimized for slurry-based roll-to-roll coatings

Cells Produced From

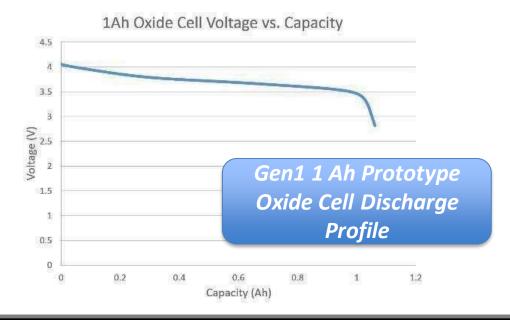
"Pelletized" Layers

Cells Produced from <u>Thin, Coated</u> <u>Layers</u>

Continuous Roll-To-Roll Solid State Cell Layer Production


LARGE-FORMAT CELL DEVELOPMENT & TESTING

Solid Power


Packaged Pouch Cell

- FeS₂ Li-metal cells produced up to 5Ah in size
 - Preliminary Abuse Testing (nail-pen, overcharge & external short) performed with Benign Failure
- NMC-Li-metal Cells up to 1Ah Produced & Tested
 - Early prototypes produce an as-measured 250 Wh/kg cell-level specific energy

Gen1 1 Ah Prototype Oxide Cell

- Solid-state is a practical approach to improving energy density and safety in parallel
- Enabling Li metal is key to enabling high energy density
- Major challenges remain in resistance/temperature, Li metal compatibility, and manufacturability
- Opens up the design space with new materials and cell and battery concepts
- Solid-state batteries are coming to electric vehicles not a matter of if, but when