

Water Consumption Testing and Analysis

AABC Europe Mainz, 1/30/2017

Dirk Uwe Sauer, Jonathan Wirth

Chair for Electrochemical Energy Conversion and Storage Systems

Motivation

- CO₂ reduction in automotive applications needed
- Carbon-enhanced batteries (EFB+C) show high potentials for higher dynamic charge acceptance
- Water consumption in hot climate is still an important issue
- How do parasitic reactions in batteries with carbon additives compare to those in common batteries in dynamic microcycles?

Motivation

- Dynamic overcharge
 - Measurement
 - $\hfill\square$ Drive cycle
 - Results
 - $\hfill\square$ Discussion
- Summary & outlook

Measurement methodology

Example for steady-state overcharge measurement (70 Ah EFB+C)

Measurement methodology

- Gas flow measurement with electronic gas analysis device (eGAS)
 - hydrogen-proof flexible connecting tube
 - □ gas is dried by silica gel
 - $\hfill\square$ 2 flow sensors for high and low gassing rates
 - □ hydrogen and oxygen concentration sensors
- Weekly weight loss and internal ac resistance (Hioki) measurements

● (a) SLI	1 type
🔶 (b) EFB	1 type
🔺 (c) EFB+C	10 types
📕 (d) AGM	3 types

Ford Research Center, Aachen

Steady-state overcharge: Test sequence

- Initial cycles (1/2)
 RC, CHA 15.4 V/24 h
 CCA SAE, CHA 15.4 V/16 h
- 24 h overcharge at 14.1 V/52 °C (cf. BCIS-04)
- 11 to 13 d overcharge
 - at 14.4 V/60 °C (cf. EN 50342-1)
 - ➔ extrapolation to 42 d

Steady-state overcharge: Test sequence with further overcharge for 18 hours

H2 + O2 in %

Steady-state overcharge: Test sequence with further overcharge for 18 hours

H2 + O2 in %

Charging during dynamic microcycles: Test definition

Charging during dynamic microcycles: Test definition

- Drive cycle with stop/start
 - 6 trips/day with 10...80 min, 4 h/day in total
 (3.5 h charging time incl. regenerative braking)
 - □ 5 driving days, 2 days week-end
 - external resistance as quiescent load (0.8 %C_n/day)
 - $\hfill\square$ 3.5 h charging with two different strategies:
 - conventional charging with 13.75 V
 - float charging with 13.2 V
 - 10% regenerative braking always 13.75 V
- Temperature profile
 - Tests performed in automated climate chamber
 Ambient 75/30 °C day/night cycle

Charging during dynamic microcycles (EFB+C): Exemplary results with different gassing behavior

Power Electronics

and Electrical

Charging during dynamic microcycles (EFB+C): General observations

- Oxygen and hydrogen concentrations are not static during the day
- Measured concentrations are low-pass filtered by battery headroom volume
 Increasing trend of H₂ indicates that almost exclusively H₂ is being formed
- Depending on charging strategy (conventional/float charging), concentrations vary significantly
- Differences might be explained with different polarization of electrodes due to different design or composition

Exemplary results with different gassing behavior

Charging during dynamic microcycles: Hydrogen evolution vs. overcharge current

 Effective overcharge current during Partial SoC (PSOC) microcycle operation calculated from daily charge balance:

 $\sum Q_{charged} - \sum Q_{discharged}$

- Electrolysis of water only partly accounts for overcharge current
 - Unknown side reaction(s) taking place:
 Oxygen recombination cycle?
 - □ Side reaction(s) higher for AGM batteries

H₂ evolution vs. overcharge currents

Results: Gassing during steady-state overcharge

Sanity check for eGAS

14

- Vapor extraction effect: 15 %vol

 23 %wt
- Weight loss and extracted gas volume correlate well

H₂ gas flow vs. electric current

Electrolysis of water only partly accounts for overcharge current \rightarrow other side reaction(s)?

Results: Gassing during steady-state overcharge

Corrosion analysis

- Subtract Faradaic equivalents of H₂ and O₂ gas flows
- Can be explained with positive grid corrosion

Oxygen recombination cycle?

 Flooded & EFB, independent of battery design, carbon, voltage, temperature

Charging during dynamic microcycles: Test results – Comparison to steady-state overcharge

- Water loss in dynamic microcycles shows lower variation than in steady-state overcharge
- Higher water loss in dynamic microcycles test, despite the lower voltages applied (13.75 vs. 14.4 V)
 - □ Values are normalized to charging time → water loss also occurs during pauses, e.g. due to self discharge
- Most of EFB+C show very similar results in dynamic overcharge test, but vary by a factor of 5 in static overcharge test
 - Which result does reflect real-life behavior better?
 - How sensible are the results to assumptions made?

Summary and outlook

- Realistic dynamic microcycles lead to significantly different gassing behavior compared with steady-state overcharging tests
- Very weak correlation between water consumption in dynamic vs. steady-state condition
- Influences of different parameters have to be analyzed:
 - □ Higher or lower loads
 - □ Voltage control, steepness of voltage changes
 - Alternator strategy
- Which high-temperature durability tests can improve correlation, yet be kept simple?

→ New test procedures are urgently needed for realistic estimation of water loss

Thank you for your attention

Contact

Dirk Uwe Sauer Tel.: +49 241 80-96977 dsa@isea.rwth-aachen.de batteries@isea.rwth-aachen.de

Chair for Electrochemical Energy Conversion and Storage Systems Univ.-Prof. Dr. rer. nat. Dirk Uwe Sauer RWTH Aachen University

Jaegerstrasse 17/19 52066 Aachen GERMANY

www.isea.rwth-aachen.de

We thank

Water Consumption Testing and Analysis

AABC Europe Mainz, 1/30/2017

Dirk Uwe Sauer, Jonathan Wirth

Chair for Electrochemical Energy Conversion and Storage Systems

